Syllabus Book

B. Tech. (Mechanical Engineering)

School of Engineering

Effective From: 2020-21

Authored by: P P Savani University

CONTENT

Sr. No.	Content	Page No
1	Syllabi of First Year	1-33
2	Syllabi of Second Year	35-83
3	Syllabi of Third Year	84-138
4	Syllabi of Fourth Year	139-163

FIRST YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL ENGINEERING PROGRAMME AY:2020-21

			Offered	Teaching Scheme						E	Examination Scheme				
Sem	Course Code	Course Title			Contact Hours			Credit	Theory		Practical		Tutorial		Total
			Ву	Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH1070	Fundamentals of Mathematics	SH	2	0	2	4	4	40	60	0	0	50	0	150
	SEME1010	Engineering Graphics	ME	3	4	0	7	5	40	60	40	60	0	0	200
1	SEME1020	Engineering Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
1	SESH1210	Applied Physics	SH	3	2	0	5	4	40	60	20	30	0	0	150
	SEPD1030	Communicative English	SEPD	1	2	0	3	2	50	0	20	30	0	0	100
						Total	21	16							650
	SESH1080	Linear Algebra & Calculus	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SESH1240	Electrical & Electronics Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
	SECV1040	Basics of Civil & Mechanical Engineering	CV	4	2	0	6	5	40	60	20	30	0	0	150
2	SECV1080	Mechanics of Solids	CV	4	2	0	6	5	40	60	20	30	0	0	150
	SECE1010	Basics of Computer & Programming	CE	3	2	0	5	4	40	60	20	30	0	0	150
	SEPD1020	Communication Skills	SEPD	1	2	0	3	2	50	0	20	30	0	0	100
			·		·	Total	27	22							750

Department of Applied Science and Humanities

Course Code: SESH1070

Course Name: Fundamentals of Mathematics

Prerequisite Course(s): Algebra, Geometry, Trigonometry & Pre-Calculus till 12th Standard level

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme(Marks)										
Theory	Practical	Tutorial	Credit	Theory		Theory		Practical		Practical		Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE					
2	0	2	4	40	60	-	-	50	0	150				

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the course:

To help learners to

- summarize concept of calculus to enhance ability of analysing mathematical problems.
- acquire knowledge and ability to work with differentiation and integration for applications of mathematical techniques in engineering.
- develop the tool of power series for learning advanced Engineering Mathematics.
- analyse and solve system of linear equations and understand characteristics of Matrices.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Calculus Limits, Continuity, Types of Discontinuity, Successive Differentiation, Rolle's Theorem, LMVT, CMVT, Maxima and Minima.	8	28			
2.	Sequence and Series-I Convergence and Divergence, Comparison Test, Integral Test, Ratio Test, Root Test, Alternating Series, Absolute and Conditional Convergence.	6	20			
	Section II					
Module No.	Content	Hours	Weightage in %			
1.	Sequence and Series-II Power series, Taylor and Macluarin series, Indeterminate forms and L'Hospitals Rule.	6	20			
2.	Matrix Algebra Elementary Row and Column operations, Inverse of matrix, Rank of matrix, System of Linear Equations, Characteristic	10	32			

Equation, Eigen values and Eigen vector, Diagonalization,	
Cayley Hamilton Theorem, Orthogonal Transformation	

List of Tutorials:

Sr.	Name of Tutorial	Hours
No.	Name of futorial	nours
1.	Calculus-1	2
2.	Calculus-2	2
3.	Integration	2
4	Sequence and Series-1	2
5.	Sequence and Series-2	2
6.	Sequence and Series-3	2
7.	Matrix Algebra-1	2
8.	Matrix Algebra-2	2
9.	Matrix Algebra-3	2
10.	Matrix Algebra-4	2

Text Book:

Title	Author(s)	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel Hass	Pearson
Elementary linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book:

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley and Sons
A textbook of Engineering Mathematics	N P Bali and Manish Goyal	Laxmi
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics For First Year	T Veerarajan	Tata Mc Graw Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass and Dr. Rama	S. Chand
	Verma	

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the student will be able to

- make use of concepts of limit, continuity and differentiability for analysing mathematical problems.
- use concepts of Limit, Derivatives and Integrals.
- examine series for its convergence and divergence.
- solve linear system using matrices.

Department of Mechanical Engineering

Course Code: SEME1010

Course Name: Engineering Graphics

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)								
Theory Dynatical		Dragtical Tutorial Condit		eory Practical Tutorial Credit		The	eory	Pra	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	1 Otal		
03	04	00	05	40	60	40	60	00	00	200		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- know conventions and the methods of engineering drawing.
- interpret engineering drawings using fundamental technical mathematics.
- construct basic and intermediate geometry.
- improve their visualization skills so that they can apply these skills in developing new products.
- improve their technical communication skill in the form of communicative drawings.
- comprehend the theory of projection.

Section I						
Module No.	Content	Hours	Weightage in %			
1.	Introduction: Importance of the Course; Use of Drawing Instruments and accessories; BIS – SP – 46; Lettering, Dimensioning and Lines; Representative Fraction; Types of Scales (Plain and Diagonal Scales); Construction of Polygons.	03	05%			
2.	Engineering Curves: Classification and Application of Engineering Curves; Construction of Conics, Cycloidal Curves, Involutes and Spiral along with Normal and Tangent to each.	06	15%			
3.	Principles of Projections: Types of Projections; Introduction of Principle Planes of Projections. Projection of Points & Line: Projection of Points in all four Quadrants; Projection of Lines with its inclination to one Referral Plane & two Referral Planes. Projection of Plane:	14	30%			

	Projection of Planes (Circular and Polygonal) with inclination		
	to one Referral Plane and two Referral Planes; Concept of		
	Auxiliary Projection Method.		
	Section II		
Module	Contont	Полия	Weightage
No.	Content	Hours	in %
	Projection and Section of Solids:		
	Projection of solids: Polyhedral, Prisms, Pyramids, Cylinder,		
4.	Cone, Auxiliary Projection Method, One View, Two View and	08	1.40/
4.	Three View Drawings. Missing View, Rules for Selection of	00	14%
	Views; Sectional View, Section Plane Perpendicular to the HP &		
	VP and other Various Positions, True Shape of Sections.		
	Orthographic Projection:		
	Types of Projections: Principle of First and Third Angle		
5.	Projection -Applications & Difference; Projection from Pictorial	07	18%
	view of Object, View from Front, Top and Sides; Full Section		
	View.		
	Isometric Projections and Isometric Drawing:		
6.	Isometric Scale, Conversion of Orthographic views into	07	18%
1	Isometric Projection, Isometric View or Drawing.		

Sr.	Name of Practical			
No.				
	Introduction sheet (dimensioning methods, different types of line,			
1.	construction of different polygon, divide the line and angle in parts, use of	08		
	stencil, lettering)			
2.	Plane scale and diagonal scale	04		
3.	Engineering curves	08		
4.	Projection of Points & Lines	06		
5.	Projection of Planes	08		
6.	Projection of solid & Section of solid	10		
7.	Orthographic projection	08		
8.	Isometric projection	08		

Text Book(s):

Title	Author(s)	Publication
A Text Book of Engineering	P J Shah	S. Chand & Company Ltd., New
Graphics		Delhi
Engineering Drawing	N D Bhatt	Charotar Publishing House,
		Anand

Reference Book(s):

Title	Author(s)	Publication		
Engineering Drawing	P.S.Gill	S. K. Kataria & sons, Delhi		

Engineering Drawing	B. Agrawal & C M Agrawal	Tata McGraw Hill, New Delhi	
Engineering Drawing made Easy	K. Venugopal	Wiley Eastern Ltd	

Web Material Link(s):

http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 20 Marks.
- Internal Viva consists of 20 Marks.
- Practical performance/quiz/drawing/test will consist of 30 Marks during End Semester Exam.
- Viva/Oral performance will consist of 30 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will able to

- know and understand "Drawing is a language of Engineers."
- interpret general assembly technical drawing.
- create traditions and the strategies for Engineering Drawing.
- evaluate basic and intermediate geometry.
- apply the knowledge of principles of projections.
- develop their hallucination/imagination skills.
- enhance their technical communication skill in the form of talkative drawings.

Department of Mechanical Engineering

Course Code: SEME1020

Course Name: Engineering Workshop

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teacl	ning Scheme	e (Hours/W	eek)		Exa	minati	on Schei	me (Ma	rks)	
Theory	Practical	Tutorial	Crodit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
0	2	0	1	0	0	50	0	0	0	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about the safety measures required to be taken while using working in workshop.
- learn about how to select the appropriate tools required for specific operation.
- learn about different manufacturing technique for production out of the given raw material.
- understand applications of machine tools, hand tools, power tools and welding process.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction: Introduction to Various Shops / Sections and Workshop Layouts, Safety Norms to be Followed in a Workshop.	-	-
2.	Fitting Shop: Introduction of Fitting Shop; Safety; Making a Job as per Drawing including Marking and other Performing Operations.	-	-
3.	Carpentry and Drilling Shop: Introduction of Carpentry Shop; Preparation of Job as per Drawing including Marking and other Performing Operations.	-	-
4.	Sheet Metal Shop: Introduction of Sheet Metal Shop; Preparation of Job as per Drawing including Marking and other Performing Operations	-	-

5.	Smithy Shop: Introduction of Sheet Metal Shop; Preparation of Job as per Drawing including Marking and other Performing Operations	•	ı
6.	Introduction to Machine Tools: Introduction and Demonstration of various Machine Tools like Lathe, Drilling, Grinding, Hack Saw Cutting etc.	-	-
7.	Introduction to Welding & Plumbing: Introduction and Demonstration of Welding process. Introduction and Demonstration of Plumbing Shop.	-	-

Sr.	Name of Practical	Hours
No		
1.	Introduction and Demonstration of Safety Norms. Different Measuring	02
	Instruments.	02
2.	To Perform a Job of Fitting Shop.	06
3.	To Perform a Job of Carpentry Shop.	06
4.	To Perform a Job of Sheet Metal Shop.	06
5.	To Perform a Job of Black Smithy Shop.	04
6.	Introduction and Demonstration of Grinding & Hacksaw Cutting Machine.	02
7.	Introduction and Demonstration of Plumbing Shop & Welding Process.	04

Text Book(s):

Title	Author(s)	Publication
Elements of Workshop Technology Vol. I	Hajra Chaudhary S. K	Media promoters & Publishers
Workshop Technology Vol. I and II	Raghuvanshi B.S.	Dhanpat Rai & Sons

Reference Book(s):

Title	Author(s)	Publication
Workshop Technology Vol. I	W.A.J. Chapman	Edward Donald Publication
Workshop Practices	H S Bawa	Tata McGraw-Hill
Basic Machine Shop Practice Vol. I, II	Tejwani V.K	Tata McGraw-Hill

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 30 Marks.
- Internal Viva consists of 20 Marks.

Course Outcome(s):

After the completion of the course, the student will able to

- use various measuring instruments.
- know the importance of safety norms required in workshop.
- understand the application of various tools required for different operation.
- understand how to manufacture product from given raw material.
- know the use of machine tools, hand tools and power tools.

Department of Applied Science & Humanities

Course Code: SESH1210 Course Name: Applied Physics Prerequisite Course(s): --

Teaching & Examination Scheme:

Teacl	ning Scheme	e (Hours/W	eek)		Exa	minati	on Schei	ne (Ma	rks)		
Theory	Practical	Tutorial	Crodit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Practical	Tutoriai	II I utoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- prepare students for career in engineering where physics principles can be applied for the advancement of technology.
- think in core concept of engineering application by studying various topics involved in branch specific application.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Quantum Mechanics: Wave-Particle Duality, De-Broglie Matter Wave, Phase and Group Velocity, Heisenberg Uncertainty Principle and its Applications, Wave Function and its Significance, Schrodinger's Wave Equation, Particle in One Dimensional Box	06	15
2.	Acousic and Ultrasonic: Introduction, Classification and Characterization of Sound, Absorption Coefficients, Sound Absorbing Materials, Sound Insulation, Ultrasonic, Properties of Ultrasonic, Generation of Ultrasonic Applications of Ultrasonic.	05	10
3.	Solid State Physics Introduction, Lattice Points and Space Lattice, Unit Cells and Lattice Parameters, Primitive Cell, Crystal Systems. The Bravais Space Lattices. Miller Indices, X-Ray Properties, Diffraction and Bragg's Law, Bragg's X-Ray Spectrum	06	10
4.	Nanophysics Nanoscale, Surface to Volume Ratio, Surface Effects on Nanomaterials, Quantum Size Effects, Nanomaterials and	06	15

	Nanotechnology, Unusual Properties of Nanomaterials,		
	Synthesis of Nanomaterials, Applications of Nanomaterials		
	Section II		
Module No.	Content	Hours	Weightage in %
	Non-Linear Optics:		
	Laser, Spontaneous and Stimulated Emission of Light,		
1.	Applications of Laser.	07	12
	Fundamental Ideas about Optical Fibre, Advantages of Optical		
	Fibre of Optical Fibre, Applications of Optical Fibre.		
	DC and AC Circuits Fundamentals		
	Introduction of Electrical Current, Voltage, Power and Energy;		
	Sources of Electrical Energy Inductor and Capacitor,		
	Fundamental Laws of Electric Circuits - Ohm's Law and		
	Kirchhoff's Laws; Analysis of Series, Parallel and Series-Parallel		
2.	Circuits.	08	25
2.	Alternating Voltages and Currents and their Vector and Time		23
	Domain Representations, Average and Rms Values, From		
	Factor, Phase Difference, Power and Power Factor, Purely		
	Resistive Inductive and Capacitive Circuits, R-L, R-C, R-L-C		
	Series Circuits, Impedance and Admittance, Circuits in Parallel,		
	Series and Parallel Resonance.		
	Electronics:		
	Semiconductors, Intrinsic and Extrinsic Semiconductor		
3.	Advantages of Semiconductor Devices, Diodes, Transistors,	07	13
	Types of Bipolar Junction Transistor, Unijunction Junction Transistor, FET and MOSFETS.		

Sr. No.	Name of Practical	Hours
1.	Volt-Ampere Characteristics of Light Emitting Diode	02
2.	Volt-Ampere Characteristics of Zener Diode	02
3.	To determine value of Planck's constant (h) using a photovoltaic cell	02
4.	To determine the Hall coefficient (R) and carrier concentration of a given	04
	material (Ge) using Hall effect.	
5.	To study the Capacitors in series and parallel DC circuit.	04
6.	To determine velocity of sound in liquid using Ultrasonic Interferometer	04
7.	To study RLC Series circuit.	02
8.	To determine numerical aperture of an optical fiber.	02
9.	Determination of Young's Modulus of given material.	02
10.	Analysis of errors.	02

Text Book(s):

Title	Author/s	Publication		
Concept of the Modern Physics	A. Beiser	Tata McGraw-Hill Education		
Basic electrical engineering	Kothari and Nagrath	Tata McGraw-Hill Education		

Quantum Mechanics	P.M. Mathew, K. Venkatesan	Tata McGraw-Hill Education
Waves and Acoustics	Pradipkumar Chakrabarti	New Central Book Agency
	Satyabrata Chawdhary	
Lasers and Nonlinear Optics	G.D. Baruah	Pragati Prakashan
Solid State Physics:	S.O. Pillai	New Age Internation
Basic Electronics:		Publishers
Basic Electronics for Scientists	Dennis L. Eggleston	Cambridge University Press
and Engineers		

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 20 marks during End Semester Exam.
- Viva/Oral performance of 10 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to

- use appropriate mathematical techniques and concepts to obtain quantitative solutions to problems in physics & electrical.
- perform a literature search, to make use of appropriate computational of laboratory skill, and to make an effective written or oral presentation of the results of the project.

Center for Skill Enhancement and Professional Development

Course Code: SEPD1030

Course Name: Communicative English

Prerequisite Course(s): --

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)				Exa	minati	on Schei	me (Ma	rks)		
т	heory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
1	пеогу	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	1	2	00	02	50		20	30			100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- utilize their knowledge of grammar effectively for communicative purpose.
- learn language in authentic contexts.
- use English efficiently for routine.
- sharpen receptive skills for better comprehension by providing authentic resources.
- Enable themselves to express ideas clearly and accurately with fluent speaking & writing skills.
- gain confidence in speaking & writing English in an academic and professional context.
- analyze and improve pronunciation.

Module	Content	Hours	Weightage
No.			in %
	Foundational Grammar & Vocabulary		
	• Functional use of pronoun, adjective, adverb, preposition,		
1.	and conjunction	03	20
	 Narration of Past, Present and Future events 		
	• Vocabulary		
	Communicative English		
	• Phrases to express likes/dislikes, request, inquiry, order,		
2.	predict, complain, question, answer, invite (accepting/	04	30
	denying)		
	• Idioms & Proverbs		
	Receptive Skills		
	Introduction to Receptive Skills		
3.	 Techniques/strategies of Reading 	04	25
	 Techniques/strategies of Listening 		
	Types of Listening Skills		

	Productive Skills		
	Speech modulation and its importance		
	Phonetics and Transcription for effective pronunciation		
4.	Speaking in various contexts	04	25
	Cohesion and Coherence/ Building Paragraphs		
	Technical Writing (Application/ Letter/ Review/ Report)		
	E-mail etiquettes		

Sr. No	Name of Practical	Hours
1.	Introduction to Foundational Grammar & Vocabulary – Ice Breaker	02
2.	Foundational Grammar - practice of pronoun, adjective, adverb,	02
	preposition, and conjunction with context	
3.	Foundational Grammar – Narrating past, present and future events	02
4.	Communicative English - exposure to structures & phrases to express	02
	various language functions	
5.	Communicative English – practice of using idioms, proverbs & phrases to	02
	communicate effectively	
6.	Communicative English – Role play for requesting, inquiring, ordering,	02
	predicting, complaining, questioning, answering, inviting	
	(accepting/denying)	
7.	Communicative English – Role play for Requesting, inquiring, ordering,	02
	predicting, complaining, questioning, answering, inviting	
	(accepting/denying)	
8.	Practice of reading through authentic resources - Summarizing and	02
	Paraphrasing.	
9.	Practice of reading through authentic resources – Skimming and Scanning	02
10.	Comprehensive Listening: Note Taking and Note Making	02
11.	Comprehensive Listening: Summarizing and Paraphrasing	02
12.	Speech for Fluency – phonetics	02
13.	Conversational Skills	02
14.	Leave Application/ Request Letter/Business Letter	02
15.	Notice/Memo/Agenda/ Minutes	02

Reference Book(s):

Title	Author(s)	Publication		
Communicative English	Dr. Anuradha, Dr. Minal	Nirmal Publishing,		
	Batra	First edition (2016)		
Communicative Grammar of English	Geoffrey Leech, Jan Sartvik	Longman, 3 rd edition		
		(6 January 2003)		
Advanced Skills for Communication	V. Jaya Santhi	New century book		
in English: Book I		house		
Engineers' Guide to Technical	Kenneth G. Budinski	ASM International,		
Writing		2001		

Communication Skills	Parul Popat & Kaushal	Pearson, 2015
	Kotadia	
Practical Techniques to Develop	Parul Popat & Kaushal	Pothi Prakashan, 2015
Communication Skills	Kotadia	

Web Material Link(s):

- https://www.researchgate.net/publication/301351158 Advanced Skills for Communicati on in English Book I
- https://anekawarnapendidikan.files.wordpress.com/2014/04/a-communicative-grammar-of-english-by-geoffrey-leech.pdf
- https://archive.org/details/FunctionalEnglish/page/n1
- https://www.talkenglish.com/grammar/grammar.aspx
- http://toefl.uobabylon.edu.iq/papers/itp 2015 3158553.pdf
- https://msu.edu/course/be/485/bewritingguideV2.0.pdf
- https://www.khanacademy.org
- http://www.kantakji.com/media/6494/t121.pdf

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and average of the same will be converted to 30 marks.
- There will be a submission consisting 10 marks as per the guidelines of course coordinator.
- Faculty Evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.

Practical:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to

- expand his/her vocabulary.
- use variety of sentence structures.
- use English effectively in academic and professional spectrum.
- enhance comprehensive listening.
- write English effectively with improved grammar and vocabulary.
- practice strategies for comprehensive reading in English.
- speak English fluently and efficiently.
- effectively use LSRW skills in English.

Department of Applied Science and Humanities

Course Code: SESH1080

Course Name: Linear Algebra & Calculus

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	'eaching Scheme (Hours/Week)			Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	0	2	5	40	60	-	-	50	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about and work with vector space, linear transformation and inner product space.
- apply concepts of linear algebra for solving science and engineering problems.
- introduce the concept of improper integral and Beta-Gamma Function.
- develop the tool of Fourier series for learning advanced Engineering Mathematics.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Vector Space Concept of vector space, Subspace, Linear Combination, Linear Dependence and Independence, Span, Basis and Dimension, Row Space, Column Space and Null Space, Rank and Nullity.	9	20
2.	Linear Transformation Introduction of Linear Transformation, Kernal and Range, Rank and Nullity, Inverse of Linear Transformation, Rank Nullity Theorem, Composition of Linear Maps, Matrix associated with linear map.	7	15
3.	Inner Product Space Inner Product, Angle and Orthogonality, Orthogonal projection, Gram- Schmidt process and QR Decomposition, Least square decomposition, Change of basis.	7	15
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Beta and Gamma function Improper Integrals, Convergence, Properties of Beta and Gamma Function, Duplication Formula (without proof)	6	14

	Fourier Series		
2.	Periodic Function, Euler Formula, Arbitrary Period, Even and	8	18
	Odd function, Half Range Expansion, Parseval's Theorem		
	Curve tracing		
3.	Tracing of Cartesian Curves, Polar Coordinates, Polar and	8	18
3.	Parametric Form of Standard Curves, Areas and Length in Polar	0	10
	co-ordinates		

List of Tutorial:

Sr. No.	Name of Tutorial	Hours
1.	Vector Space-1	4
2.	Vector Space-2	2
3.	Linear Transformation-1	2
4	Linear Transformation-2	2
5.	Inner Product-1	2
6.	Inner Product-2	2
7.	Beta and Gamma Function-1	2
8.	Beta and Gamma Function-2	2
9.	Curve tracing-1	2
10.	Curve tracing-2	2

Text Book(s):

Title	Author/s	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel Hass	Pearson
Elementary Linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book(s):

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley & Sons
A textbook of Engineering Mathematics	N P Bali and Manish Goyal	Laxmi
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics for First Year	T Veerarajan	Tata Mc Graw Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass and Dr. Rama	S. Chand
	Verma	

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After completion of the course, the student will be able to

- understand the concepts of Vector Space, Linear Transformation and inner product
- space.
- evaluate functions like Gamma, Beta functions & their relation which is helpful to evaluate some definite integral arising in various branch of engineering.
- understand the concept of Fourier series.

Department of Applied sciences & Humanities

Course Code: SESH1240

Course Name: Electrical & Electronics Workshop

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching	ching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	Practical	Tutorial Credit		Theor	У	Practi	cal	Tutor	ial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
0	2	0	1	0	0	50	0	0	0	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify basic fundamental electronic components in circuits.
- learn to use common electronic component on breadboard.
- understand components of instruments, terminology and applications.

List of Practical:

Sr No	Name of Practical	Hours	
1	Understanding of electronic component with specification.	2	
2	Understanding of Galvanometer, Voltmeter, Ammeter, Wattmeter and	2	
	Multimeter		
3	Understanding of breadboard connections	2	
4	Drawing and wiring of basic circuits on breadboard	2	
5	Verification of Ohm's law		
6	Half wave, full wave using centre tap transformer and full wave bridge		
	rectifier		
7	Kirchhoff's laws (KVL,KCL).	3	
8	Faraday's laws of Electromagnetic Induction and Electricity Lab	4	
9	LDR characteristics		
10	Study of CRO, measurement of amplitude (voltage) & time period	4	
	(frequency)		
11	PCB designing	4	

Text Book:

Title	Author/s	Publication
Electronic Principles	Albert Malvino and David J Bates	Mc Graw Hill(7th Edition)

Reference Book:

Title	Author/s	Publication
Electronic Devices	Thomas L. Floyd	Pearson (7th Edition)
Electronic Devices and Circuits	David A. Bell	Oxford Press (5th Edition)
Integrated Electronics	Jacob Millman, Christos	Tata McGraw Hill (2nd Edition)

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 20 Marks.
- Internal viva consists of 20 marks.

Course Outcome(s):

• After completion of the course, the students will be able to design elementary combinational and sequential circuits.

Department of Civil Engineering

Course Code: SECV1040

Course Name: Basics of Civil & Mechanical Engineering

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching	aching Scheme (Hours/Week) Examination Scheme (Marks)				Examination S						
Theory	Practical	Tutorial Credit		al Tutorial	Theor	у	Practi	cal	Tutori	ial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
4	2	0	5	40	60	20	30	0	0	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- study the fundamentals of mechanical systems.
- study and appreciate significance of mechanical engineering in different fields of engineering.
- carry out simple land survey and recent trends in civil engineering.
- understand components of building, building terminology and construction materials.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Civil Engineering: An Overview Introduction, Branches, Scope, Impact, Role of Civil Engineer, Unit of Measurement, Unit Conversion (Length, Area, Volume)	03	04
2.	Introduction to Surveying and Levelling: Introduction, Fundamental Principles, Classification Linear Measurement: Instrument Used, Chaining on Plane Ground, Offset, Ranging Angular Measurement: Instrument Used, Meridian, Bearing, Local Attraction Levelling: Instrument Used, Basic Terminologies, Types of Levelling, Method of Levelling Modern Tools: Introduction to Theodolite, Total Station, GPS	07	12
3.	Building Materials and Construction: Introduction (Types and Properties) to Construction Materials Like Stone, Bricks, Cement, Sand, Aggregates, Concrete, Steel. Classification of Buildings, Types of Loads	10	14

	Acting on Buildings, Building Components and their Functions, Types of Foundation and Importance, Symbols Used in Electrical Layout, Symbols Used for Water Supply,		
	Plumbing and Sanitation		
4.	Construction Equipment: Types of Equipment- Functions, Uses. Hauling Equipment- Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE.	04	08
	Recent Trends in Civil Engineering:		
5.	Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material	06	12
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics	04	06
2.	Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value	04	06
3.	Basics of Steam Generators: Introduction, Classification, Cochran, Lancashire and Babcock and Wilcox Boiler, Functioning of Different Mountings and Accessories	LAB	12
4.	Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines	12	14
5.	Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	10	12

Sr. No.	Name of Practical					
1.	Unit conversation Exercise and Chart preparation of building	02				
1.	components					
2.	Linear measurements	02				
3.	Angular measurements	02				
4.	Determine R. L of given point by Dumpy level. (Without Change Point)	02				
5.	Determine R. L of given point by Dumpy level. (With Change Point)					
6.	Presentation on various topics as in module about recent trends					
7.	To understand construction and working of various types of boilers					
8.	To understand construction and working of mountings					
9.	To understand construction and working of accessories					
10.	To understand construction and working 2 –stroke & 4 –stroke Petrol					
10.	Engines	02				
11.	To understand construction and working 2 –stroke & 4 –stroke Diesel					
11.	Engines	02				

Text Book(s):

Title	Author(s)	Publication	
Elements of Mechanical Engineering	S. B. Mathur,	Dhanpat Rai & Sons	
Elements of Mechanical Engineering	S. Domkundwar	Publications	
Elements of Mechanical Engineering	Sadhu Singh	S. Chand Publications	
Elements of Civil Engineering	Anurag A. Kandya	Charotar Publication	
Surveying Vol. I & II	Dr. B. C. Punamia	Laxmi Publication	

Reference Book(s):

Title	Author(s)	Publication
Thermal Engineering	R. K. Rajput	Laxmi Publications
Basic Mechanical Engineering	T.S. Rajan	Wiley Eastern Ltd., 1996.
Surveying and Levelling	N. N. Basak	Tata McGraw Hill
Surveying Vol. I	S. K. Duggal	Tata McGraw Hill
Surveying and Levelling	R. Subramanian	Oxford University
Building Construction and	G. S. Birdie and T. D. Ahuja	Dhanpat Rai Publishing
Construction Material		
Engineering Material	S.C. Rangwala	Charotar Publication

Web Material Link(s):

- http://nptel.ac.in/course.php
- http://nptel.ac.in/courses/105107157/
- http://nptel.ac.in/courses/105101087/
- http://nptel.ac.in/courses/105107121/
- http://nptel.ac.in/courses/105104100/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to

- know the principles and working of basic mechanical systems.
- comprehend importance of mechanical engineering in various fields of engineering.
- know about different civil engineering fields with an overview of building material, building construction and recent developments in civil engineering.

Department of Civil Engineering

Course Code: SECV1080

Course Name: Mechanics of Solids

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)				Examination Scheme (Marks)					
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand different types of forces, systematic evaluation of effect of these forces, behavior
 of rigid and deformable bodies subjected to various types of forces at the state of rest or
 motion of the particles.
- understand the stresses developed under the application of force.
- understand the physical and mechanical properties of materials.
- understand behavior of structural element under the influence of various loads.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction: Definition of Rigid Body, Deformable Body, Scalar and Vector Quantities, Fundamental Principles of Mechanics: Principle of Transmissibility, Principle of Superposition, Law of Parallelogram of Forces.	3	6			
2.	Fundamental of Static: Force, Types of Forces, Characteristics of a Force, System of Forces, Composition and Resolution of Forces. Concurrent Forces: Resultant of Coplanar Concurrent Force System by Analytical Method, Law of Triangle of Forces, Law of Polygon of Forces, Equilibrium Conditions for Coplanar Concurrent Forces. Non-Concurrent Forces: Moments & Couples, Characteristics of Moment And Couple, Varignon's Theorem, Resultant of Non-Concurrent Forces by Analytical Method, Equilibrium Conditions of Coplanar Non-Concurrent Force System.	10	22			

	•		
3.	Centroid and Centre of Gravity: Centroid of Lines, Plane Areas and Volumes, Examples Related to Centroid of Composite Geometry, Pappus –Guldinus Theorems.	5	11
4.	Moment of Inertia: Parallel and Perpendicular Axis Theorems, Polar Moment of Inertia, Radius of Gyration of Areas, Examples related to moment of Inertia of Composite geometry.	5	11
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Mechanical Properties of Materials: Introduction, Classification of Materials, Properties Related to Axial, Bending, and Torsional & Shear Loading, Toughness, Hardness, Ductility, Brittleness. Proof stress, Factor of Safety, Working Stress, Load Factor.	2*	5
2.	Simple Stress and Strain: Definition of Stress and Strain, Tensile & Compressive Stresses: Shear and Complementary Shear Strains, Linear, Shear, Lateral, Thermal and Volumetric. Hooke's Law, Stresses and Strain in bars of Varying, Tapering & Composite Section, Principle of Superposition. Elastic Constant, Relation between Elastic Constants.	10	21
3.	Shear Force and Bending Moment: Introduction, Types of Loads, Supports and Beams, Shear Force, Bending Moment, Sign Conventions for Shear Force & Bending Moment. Statically Determinate Beam, Support Reactions, SFD and BMD for Concentrated Load and Uniformly Distributed Load, Uniformly Varying Load, Point of Contraflexure.	12	24

^{*(}To be covered during lab hours)

List of Practical (Any Ten):

Sr. No	Name of Practical	Hours
1.	Equilibrium of coplanar concurrent forces	02
2.	To verify the law of parallelogram of forces	02
3.	To verify the law of polygon of forces	02
4.	To verify the Lami's theorem	02
5.	Equilibrium of parallel force system – simply supported beam	02
6.	Tensile test on Ductile materials.	02
7.	Compression test on Ductile materials	02
8.	Compression test on Brittle Materials	02
9.	Determination of hardness of metals (Brinell/ Rockwell hardness test)	02
10.	Determination of impact of metals (Izod/ Charpy impact test)	02
11.	Tutorial on concurrent & Non-concurrent forces	04
12.	Tutorials on C. G & MI	02
13.	Tutorials on SFD & BMD	04

Text Book(s):

Title	Author(s)	Publication
Applied Mechanics	S. B. Junnarkar & H. J. Shah	Charotar Publication
Strength of Materials (SI Units)	R S Khurmi, N Khurmi	S. Chand & Company Pvt.

Reference Book(s):

Title	Author(s)	Publication
Engineering Mechanics,	Meriam and Karaige,	Wiley-India
Engineering Mechanics: Statics	S Rajsekaran	Vikas Publication
and Dynamics		
Engineering Mechanics of Solids	Popov E. P	Prentice Hall of India
Strength of Materials (SI Units)	Er. R . K. Rajput	S. Chand & Company Pvt. Ltd.
Mechanics of Structure-Vol.I	Dr. H.J. Shah & S. B.	Charotar Publishing House Pvt.
	Junarkar	Ltd.
Strength of materials	R. Subramanian	Oxford Publications
Strength of materials	S. Ramamrutham	DhanpatRai Publishing Company
Strength of Materials (SI Units)	Er. R . K. Rajput	S. Chand & Company Pvt. Ltd.

Web Material Link(s):

- http://nptel.ac.in/courses/122104014/
- http://nptel.ac.in/courses/112103108/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

- understand fundamental principles of mechanics, equilibrium, statics reactions and internal forces in statically determinate beams.
- apply principles of statics for determine C.G and M.I of a different geometrical shape and Understand basics of friction and its importance.
- critically analyze problem and solve the problem related to mechanical elements and analyze the deformation behavior for different types of loads.
- understand the different types of stresses and strains developed in the member subjected to axial, bending, shear & torsional effects.
- understand the physical properties of materials.

Department of Computer Engineering

Course Code: SECE1010

Course Name: Basics of Computer and Programming

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/ Week)					Exa	minati	on Schei	me (Ma	rks)	
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basic components of computer system.
- identify appropriate approach to computational problems.
- develop logic building and problem solving skill.

	Section I		
Module No.	Content	Hours	Weightage in %
	Introduction to Computer and its Architecture: Introduction and Characteristics, Generation, Classification,		
1.	Applications, Central Processing Unit, Communication between Various Units, Processor Speed, Various Input and Output	03	10
	Devices.		
2.	Memory and Operating Systems: Introduction to Memory, Memory Hierarchy, Primary Memory and its Type, Secondary Memory, Classification of Secondary Memory, Various Secondary Storage Devices and their Functioning, their Merits and Demerits, Evolution of Operating System, Types and Functions of Operating Systems,	06	15
3.	Recent Advances in Computer: Introduction to Emerging Areas like Artificial Intelligence, IoT tools, Data Science, Sensors, 3D Printing, Automization in the field of Civil, Mechanical and Chemical.	05	10
4.	Computer Programming Language: Introduction to different types of Programming Languages, Flowcharts and Algorithms. Introduction to C Programming Language, Features of C, Structure of C Program, Development of Program, Types of Errors, Debugging and Tracing Execution of Program.	08	15

	Section II					
Module No.	Content	Hours	Weightage in %			
	Constants, Variables and data Types:					
	Character Set, C tokens, Keyword, Constants and Variables,					
1.	Data Types - Declaration and Initialization, User define type	05	10			
	Declarations Typedef, Enum, Basic Input and Output					
	Operations, Symbolic Constants					
	Operators and Expression and Managing I/O operations:					
	Introduction to Operators and its Types, Evaluation of					
	Expressions, Precedence of Arithmetic Operators, Type					
2.	Conversions in Expressions, Operator Precedence and	07	16			
	Associativity.					
	Managing Input and Output, Reading a Character, Writing a					
	Character, Formatted Input, Formatted Output.					
	Conditional statement and branching:					
	Decision Making & Branching: Decision Making with If & If					
3.	Else Statements, If - Else Statements (Nested Ladder), The	06	12			
٥.	Switch & go - to Statements, The Ternary (?:) Operator Looping:	00	12			
	The While Statement, The Break Statement & The Do. While					
	Loop, The FOR Loop, Jump Within Loops - Programs.					
	Arrays and Strings:					
	Introduction to Array, One Dimensional Array, Two					
4.	Dimensional Arrays, Declaring and Initializing String Variables,	05	12			
	Arithmetic Operations on Characters, Putting Strings Together,					
	Comparison of Two Strings, Basic String Handling Functions					

Sr.	Name of Practical	Hours
No		
1.	Introduction to Basic Command	04
2.	Word Processing, Spreadsheets and Presentation Exercises	06
3.	Introduction to Octave Environment	04
4.	Implementation in C for conditional statement and branching	06
	Implementation of if, ifelse, nested ifelse and switch statements	
	Implementation of while loop, dowhile loop and for loop	
5.	Implementation of 1-D and 2-D array	06
6.	Implementation of in built string functions, application programs of array	04
	and strings	

[#] Use of different libraries will be covered in Practical Assignments.

Text Book(s):

Title	Author(s)	Publication		
Programming in ANSI C	E. Balagurusamy	Tata McGraw Hill		
Introduction to Computer Science	ITL Education Solutions Ltd	Pearson Education		

Reference Book(s):

Title	Author(s)	Publication
Programming in C	Ashok Kamthane	Pearson
Let Us C	Yashavant P. Kanetkar	Tata McGraw Hill
Introduction to C Programming	Reema Thareja	Oxford Higher Education
Programming with C	Byron Gottfried	Tata McGraw Hill

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical, which will be evaluated out of 10 per each practical. At the end of the semester, the average of the entire practical will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/test consists of 15 marks during End Semester Examination.
- Viva/Oral performance consists of 15 marks during End Semester Examination.

Course Outcomes:

After completion of the course, the student will be able to

- explore new emerging areas of the field.
- apply programming fundamentals to solve real time problems.

Center for Skill Enhancement and Professional Development

Course Code: SEPD1020

Course Name: Communication Skills

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	ıminati	on Schei	ne (Ma	rks)		
Theory Practical		al Tutorial Cred	Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
01	02	00	02	50	00	20	30	-		100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- hone basic communication skills by exposing them to the key communication techniques.
- improvise comprehension and expressional skills which are required for personal, social, academic and professional environment.
- sharpen communication skills with reference to organizational structure.
- show the importance of team work and give practice in group communication with reference to group dynamics.

Module No.	Content	Hours	Weightage in %
	Introduction to Communication Skills		
	 Concept and Process of Communication 		
1.	Types of Communication	05	33
	• Principles of Effective Communication		
	Barriers to Communication		
	Interpersonal Organizational Communication		
2.	Styles and Flows of Communication	0.2	20
	Essentials of Organizational Communication	03	
	Kinesics, Proxemics and Chronemics		
	Team/ Group Dynamics and Leadership		
3.	 Types of Groups and Essentials of Group Work and 		20
	Networking	03	
	 Concept and Types of Leadership 		
	Traits of an Effective Leader		
4.	Presentation Skills		
	 Modes, Means and Purposes of Presentation 	04	27
	Audience Analysis and Content Organization		

•	Visual aids and Nuances of Delivery	
•	Non Verbal Cues for Effective Presentation	

Sr. No	Name of Practical	Hours
1.	Introduction to Communication: An Ice Breaker	02
2.	Verbal/ Non-Verbal Communication Pros and Cons	02
3.	Principles of Communication	02
4.	Barriers to Communication	02
5.	Interpersonal Communication	02
6.	Organizational Communication	02
7.	Assertive Vs Aggressive Communication	02
8.	Group Dynamics: A Decision-Making Activity	02
9.	Group Dynamics Working together to achieve organizational vision	02
10.	Difference between Group Discussion and Debate	02
11.	Leadership: Holding a diverse Group Together	02
12.	Presentation Skills; Video Session	02
13.	Presentations by the student: Self-Peer-teacher assessment	02
14.	Presentations by the student: Self-Peer-teacher assessment	02
15.	Presentations by the student: Self-Peer-teacher assessment	02

Text Book(s):

Title	Author(s)	Publication
Practical Techniques to Develop	Parul Popat & Kaushal	Pothi Prakashan, 2015
Communication Skills	Kotadia	

Reference Book(s):

Title	Author(s)	Publication
Communication Skills	Parul Popat & Kaushal Kotadia	Pearson, 2015
Communication Skills, Second Edition	Sanjay Kumar, Pushp Lata	Oxford University
		Press,2015
Communication Skills for Engineers	Sunita Mishra	Pearson, 2011
Effective Interpersonal and Team	Clifford Whitcomb, Leslie E.	John Wiley &
Communication Skills for Engineers	Whitcomb	Sons, 2012

Web Material Link(s):

- http://www.mindtools.com/page8.html
- http://techpreparation.com/soft-skills.htm?gclid=CJf34fyQv5wCFdMtpAodjjX tA
- http://lorien.ncl.ac.uk/ming/Dept/Tips/present/comms.htm

Course Evaluation:

Theory:

- Continuous Evaluation consists two tests each of 30 marks and average of the same will be converted to 30 marks.
- There will be a submission consisting 10 marks as per the guidelines of course coordinator.
- Faculty Evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 for each practical.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- follow the process of communication and its components in organizational context.
- express themselves and to participate in the classroom discussions and other such academic activities.
- comprehend whatever they receive from Informal Interactions with the family, teachers and friends; and from Formal Communications taking Place in Lectures, Laboratories and the like.
- enhance the teamwork and collaborative attitude.
- communicate effectively using suitable styles and techniques.
- able to participate in the group discussions and other such academic or academic support activities.
- use language effectively with reference to communication in groups and group behaviour.

SECOND YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL PROGRAMME AY:2020-21

	Course		Offered	Teaching Scheme						F	Exami	natior	Sch	eme	
Sem	Code	Course Title	By	Contact Hours				Credit	Theory		Theory Practical		Tut	orial	Total
	Coue		Бу	Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH2011	Differential Equations	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SEME2011	Engineering Thermodynamics	ME	3	0	1	4	4	40	60	0	0	20	30	150
	SEME2020	Material Science & Metallurgy	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SECV2102	Advanced Solid Mechanics	CV	3	2	0	5	4	40	60	20	30	0	0	150
	SEME2030	Non-Cutting Manufacturing Processes	ME	3	2	0	5	4	40	60	20	30	0	0	150
3	SEME2041	Machine Drawing	ME	0	2	0	2	1	0	0	50	0	0	0	50
	SEPD2010	Critical Thinking, Creativity & Decision Making	SEPD	2	0	0	2	2	40	60	0	0	0	0	100
	SEPD3040	Integrated Personality Development Course - I	SEPD	2	0	0	2	1	40	60	0	0	0	0	100
	SEME2910	Industrial Exposure	ME		2		0	2	0	0	100	0	0	0	100
						Total	30	27							1100
	SESH2022	Numerical & Statistical Analysis	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SEME2050	Forming & Machining Processes	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME2060	Fluid Mechanics	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME2070	Mechanical Measurement & Metrology	ME	3	2	0	5	4	40	60	20	30	0	0	150
4	SEME2081	Kinematics of Machinery	ME	4	0	1	5	5	40	60	0	0	50	0	150
7	SESH2211	Basics of Electrical & Electronics	SH	0	2	0	2	1	0	0	50	0	0	0	50
	SEPD3050	Integrated Personality Development Course-II	SEPD	2	0	0	2	1	40	60	0	0	0	0	100
	SEPD3030	Foreign Language (German)	SEPD		2		2	2	40	60	0	0	0	0	100
						Total	31	26							1000

Department of Science & Humanities

Course Code: SESH2011

Course Name: Differential Equations

Prerequisite Course(s): SESH1010-Elementary Mathematics for Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)							
Theory	hoomy Dragtical Tutorial		Dragtical	orial Credit -		eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
03	00	02	05	40	60	00	00	50	00	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn orientation of calculus and its applications in solving engineering problems involving differential equations.
- understand the introduction of partial differential equations with methods of its solutions.
- learn the application of Laplace transforms to solve linear differential equations.
- understand the introduction of periodic functions and Fourier series with their applications for solving ODEs.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Ordinary Differential Equation First order ODEs, Formation of differential equations, Solution of differential equation, Solution of equations in separable form, Exact first order ODEs, Linear first order ODEs, Bernoulli Equation, ODEs of Second and Higher order, Homogeneous linear ODEs, Linear Dependence and Independence of Solutions, Homogeneous linear ODEs with constant coefficients, Differential Operators Nonhomogeneous ODEs, Undetermined Coefficients, Variation of Parameters	10	20				
2.	Partial Differential Equation Formation of First and Second order equations, Solution of First order equations, Linear and Non-liner equations of first, Higher order equations with constant coefficients, Complementary function, Particular Integrals.	7	18				
3.	Applications of ODE and PDE Orthogonal trajectories, Method of Separation of Variables, D'Albert's solution of wave equation, Solution of heat equation.	5	12				

	Section II						
Module	Content	Hours	Weightage				
No.	Gontent	Hours	in %				
	Laplace Transform						
	Laplace Transform, Linearity, First Shifting Theorem, Existence						
	Theorem, Transforms of Derivatives and Integrals, Unit Step						
1.	Function, Second Shifting Theorem, Dirac's Delta function,	10	20				
1.	Laplace Transformation of Periodic function, Inverse Laplace	10	20				
	transform, Convolution, Integral Equations, Differentiation and						
	Integrations of Transforms, Application to System of						
	Differential Equation.						
	Fourier Series						
2.	Periodic function, Euler Formula, Arbitrary Period, Even and	7	15				
	Odd function, Half-Range Expansions, Applications to ODEs.						
	Fourier Integral and Transformation						
3.	Representation by Fourier Integral, Fourier Cosine Integral,	6	15				
3.	Fourier Sine Integral, Fourier Cosine Transform and Sine	0	13				
	Transform, Linearity, Fourier Transform of Derivatives.						

List of Tutorials:

Sr No	Name of Tutorial	Hours
1.	Ordinary Differential Equation-1	2
2.	Ordinary Differential Equation-2	2
3.	Ordinary Differential Equation-3	4
4.	Partial Differential Equation-1	2
5.	Partial Differential Equation-2	4
6.	Applications of ODE and PDE	2
7.	Laplace Transform-1	2
8.	Laplace Transform-2	2
9.	Laplace Transform-3	4
10.	Fourier Series-1	2
11.	Fourier Series-2	2
12.	Fourier Integral and Transformation	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers
Advanced Engineering Mathematics	R. K. Jain, S.R.K. Iyengar	Narosa Publishing House
		Pvt. Ltd.
Differential Equations for Dummies	Steven Holzner	Wiley India Pvt. Ltd.
Higher Engineering Mathematics	H.K. Dass, Er. Rajnish	S. Chand & Company Pvt.
	Verma	Ltd.

Web Material Links:

- http://nptel.ac.in/courses/111105035/
- http://nptel.ac.in/courses/111106100/
- http://nptel.ac.in/courses/111105093/
- http://nptel.ac.in/courses/111108081/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 Marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- grasp the respective 1st and 2nd order ODE and PDE.
- analyze engineering problems (growth, decay, flow, spring and series/parallel electronic circuits) using 1st and 2nd order ODE.
- classify differential equations and solve linear and non-linear partial differential equations.
- apply understanding of concepts, formulas, and problem-solving procedures to thoroughly investigate relevant real-world problems.

Department of Mechanical Engineering

Course Code: SEME2011

Course Name: Engineering Thermodynamics

Prerequisite Course(s): SEME1030-Elements of Mechanical Engineering

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Theory Practical Tutorial		utorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Practical Tutorial C	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	01	04	40	60	00	00	20	30	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify different aspects of thermodynamics and their application.
- interpret different laws of thermodynamics and their application to field and daily life.
- understand various gas laws and equations of state and their application.
- understand the role of entropy, exergy to the universe.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Basic Concepts of Thermodynamic Classical and statistical thermodynamic approach, Thermodynamic: system, properties, states, processes, cycle & equilibrium, Concepts of: control volume and control surface, Specific heat capacity, Internal Energy, Enthalpy, Specific Volume, heat and work.	05	07			
2.	First and Second law of Thermodynamics First law for a closed system undergoing a cycle and change of state, energy, PMM1, First law of thermodynamics for a nonflow and flow process. Limitations of first law of thermodynamics, Statements of second law of thermodynamics and their equivalence, PMM2, Carnot's theorem, Corollary of Carnot's theorem, Causes of irreversibility.	08	20			
3.	Entropy Clausius theorem, property of entropy, Clausius inequality, entropy change in an irreversible process, principle of increase of entropy, entropy change for non-flow and flow processes, third law of thermodynamics, PPM3, Entropy change for phase changing process.	05	15			

4.	Exergy Energy of a heat input in a cycle, exergy destruction in heat transfer process, exergy of finite heat capacity body, exergy of closed and steady flow system, irreversibility and Gouy-Stodola theorem and its applications, second law efficiency.	05	08
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Vapour Power Cycles Carnot vapor cycle, Rankine cycle, comparison of Carnot and Rankine cycle, carnot cycle efficiency, variables affecting efficiency of Rankine cycle.	06	15
2.	Gas Power Cycles Carnot, Otto and Diesel cycle, Dual cycle, Comparison of Otto, Diesel and Dual cycles, air standard efficiency, mean effective pressure, brake thermal efficiency, relative efficiency, Brayton cycle.	06	15
3.	Properties of gases and gas mixtures Avogadro's law, equation of state, ideal gas equation, Vander Waal's equation, reduced properties, law of corresponding states, compressibility chart, Gibbs-Dalton law, internal energy; enthalpy and specific heat of a gas mixtures.	06	12
4.	Refrigeration and Liquefaction Carnot refrigeration cycle, air refrigeration cycle, absorption refrigeration, choice of refrigeration,	04	08

List of Tutorials:

Sr. No.	Name of Tutorial	Hours
1.	To interpret comparison of heat and work and solution of basic	01
1.	numerical on heat and work interaction.	01
2.	To solve numerical on S.F.E.E and its application to engineering devices	02
۷.	like boiler, heat exchanger, turbine compressor etc.	02
3.	To understand concept of heat engine, heat pump, and refrigerator	02
3.	based on second law of thermodynamics.	02
4.	To solve basic numerical on concept of Entropy.	02
5.	To solve numerical on vapour power cylces.	02
6.	To understand reheat cycle, regenerative cycle, reheat-regenerative	02
0.	cycle, feedwater heaters for rankine cycle.	02
7.	To solve numerical on gas power cycles.	02
8.	To understand effect of reheat, regeneration and intercooling on	02
0.	brayton cycle.	02

Text Book (s):

Title	Author/s	Publication
Engineering Thermodynamics	P.K. Nag	McGraw-Hill Education

Reference Book(s):

Title	Author/s	Publication
Fundamentals of Thermodynamics	Borgnakke & Sonntag	Wiley India (P) Ltd.
Thermodynamics - An Engineering	Yunus Cengel & Boles	McGraw-Hill Education
Approach		
Engineering Thermodynamics	Gordon Rogers & Yon	Pearson Education Ltd.
	Mayhew	
Engineering Thermodynamics	Jones and Dugan,	PHI Learning Pvt. Ltd

Web Material Links:

• http://nptel.ac.in/courses/112105123/1

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Circuits and charts for gas & vapour power cycle consists of 10 marks.
- Internal Viva consists of 10 marks.
- Viva/Oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

- interpret basics terms of thermodynamics.
- define and demonstrate laws of thermodynamics and its application.
- interpret differentiate concept of entropy, energy and exergy and their application.
- analyze different gas and vapour power cycles and its applications.
- identify behavior and properties of gases and its mixtures.

Department of Mechanical Engineering

Course Code: SEME2020

Course Name: Material Science & Metallurgy

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week) Examination Scheme (Marks)				rks)					
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify the different materials and their properties described.
- understand the microstructures, crystallography, defects, and phase diagrams of different materials.
- understand the process involved in mechanical testing of materials and their deformation under certain conditions.
- understand the role of heat treatment to achieve desired variation in properties of materials.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Introduction to Materials Classification of Engineering Materials, Engineering requirements of materials, Methods/Tools to reveal the different levels of structure. Defects-Point, Line, Planar; Crystal geometry and Crystal Imperfections: Unit Cell, Crystal structure, Bravise lattice, atomic packing, coordination number, crystal structures of metallic elements, crystal directions and planes, Miller indices, Polymorphism or Allotropy. Crystal structure and correlated properties. diffusion processes, Mechanism of crystallization – nucleation and growth, factors influencing nucleation and growth, Imperfections in crystals and their effect on properties, Solute strengthening, Corrosion	06	12				

	Phase Diagrams and Phase Transformation		
	Phase, Gibbs's Phase rule, Solubility and Solid Solutions,		
	_		
	Iso-morphous alloy system, Eutectoid and Peritectic	0.6	4.0
2.	system, Evolution of Microstructure, Phase	06	10
	Transformation-Temperature-Time-Transformation		
	(TTT) and Continuous Cooling Transformation (CCT)		
	Diagrams, Electro Microscopy.		
	Solidification of Metals		
	Solidification of metals and an alloy, Nucleation and		
	Growth during freezing of pure metal and alloy ingot/a		
3.	casting Resultant macrostructures; Effects of Structure on	05	10
	Mechanical Properties, Methods to control the grain		
	structure resulting from solidification, Solidification		
	defects like porosity and shrinkage and remedies. Cooling curve of pure metal and alloy.		
	Heat Treatment		
	Annealing and its types, Normalizing, Aus-tempering,		
	Mar-tempering, Quenching and Temper heat treatment,		
	Hardenability, Applications of above processes for the		
4.	industrial practices.	05	13
4.	•	05	13
	Surface hardening processes		
	Flame and induction hardening, Carburizing, Nitriding		
	and Carbonitriding, Applications of above processes for		
	the industrial practices.		
	Powder Metallurgy		a =
5.	Application and advantages, Production of powder,	Laboratory	05
	Compacting, Sintering, Equipment and process capability.		
	Section II	T	
Module	Content	Hours	Weightage
No.			in %
	Cast Iron and Alloy steel		
	Iron-Iron Carbide and Iron-carbon diagrams,		
	Transformations resulting into White Cast Iron, Grey Cast		
	Iron, Malleable Cast Iron, S. G. Iron, Alloy Cast Iron. Their		
	microstructures and correlated properties and		
1.	applications, IS Codification, Purpose of alloying, General	09	20
1.	effect of alloying elements on ferrite, carbide,		20
	transformation temperature, hardenability and		
	tempering. Types of steel: Chromium, Manganese,		
	Molybdenum and Manganese steels, IS Codification, Tool		
	Steels Classification, properties, applications and IS and		
	ISO Codification.		
	Non-Ferrous Alloys		
	Non-Ferrous Alloys of Aluminium, Magnesium, Copper,		
2.	Nickel, Titanium, Microstructure and mechanical	Laboratory	05
	property relationships; Composite, Classification,		
	Property readminips, domposite, diassintation,	1	
	Processing, Metal Matrix		

3.	Mechanical Behavior of Metals Properties of metals, Deformation of metals, Mechanisms of deformation, Deformation in polycrystalline materials, Mechanical testing of materials (destructive & nondestructive) testing methods.	07	15
4.	Polymers, Ceramics and Composites Definition, Classification & characteristics of polymers, Types of polymerization, Polymer processing, polymer matrix, properties and applications Elastomers, Properties of ceramic materials, Cermets, Ceramic Matrix, Ceramics, Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded Silicon Nitride, Processing Composite materials, Fiber reinforced plastic (FRP), Glasses properties and applications.	07	10

List of Practical:

Sr. No.	Name of Practical	Hours
1.	To understand construction and working of metallographic microscope.	02
2.	To study procedure of specimen preparation for microscopic examination and to carry out a specimen preparation.	04
3.	To understand what is micro examination, importance of micro examination and to study various ferrous, non-ferrous microstructures.	04
4.	To show the effect of different quenching media like Oil, Water and Brine on the hardness of medium carbon steel.	04
5.	To find out the effect of varying section size on hardenability of steel and obtain hardness distribution curves of hardened steel cross-section.	04
6.	To determine machine defects by dye -penetrant test and magnetic particle test.	04
7.	To determine the hardenability by Jominy end quench test.	04
8.	Study of different heat treatment processes- annealing, normalizing, hardening and tempering, surface and casehardening to improve properties of steel during processes and applications with the help of muffle furnace.	04

Text Book(s):

Title	Author/s	Publication
Callister's Material Science and Engineering	R. Balasubramaniam	Wiley India

Reference Book(s):

Title	Author/s	Publication	
Materials Science and Metallurgy	O. P. khanna	Dhanpatrai	
Materials Science and Metanurgy	U. P. Kilalilla	Publication	
Principles of Materials Science and	W F Smith	McGraw Hill	
Engineering	W F SIIIUI	McGraw Hill	
Elements of Material Science and Engineering	Lawrence H. Van	Pearson Education	
Elements of Material Science and Engineering	Vlack,	Pearson Education	

Web Material Links:

http://nptel.ac.in/downloads/113106032/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of solution of Practical which will be evaluated out of 10 for each and average of the same will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Performance/Problem solution/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

- interpret important mechanical properties and classification of engineering materials and metals.
- define different heat treatment process used in industrial applications.
- understand the solidification process of metals and alloys.
- analyze different microstructure, crystallography and defects of cast iron and steel specimen.
- identify different destructive & nondestructive testing methods used in the practical field and their applications.
- understand the use powder metallurgy and their application to industries.

Department of Civil Engineering

Course Code: SECV2102

Course Name: Advanced Solid Mechanics

Prerequisite Course(s): Engineering Mechanics (SECV1030), Solid Mechanics (SECV1070)/

Mechanics of Solids (SECV1080)

Teaching & Examination Scheme:

Teaching Schem		e (Hours/W	/eek)	Examination Scheme (Marks)						
Theory	Practical	Tutorial	Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to understand

- the stresses developed under the application of force.
- the effect of torsion on material.
- behavior of structural element under the influence of various stresses.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Bending Stress in Beam Theory of simple bending, Assumptions, Derivation of flexural formula, Position of Neutral axis, Section modulus, Second moment of area of common cross sections (rectangular, I,T,C) with respective centroid & parallel axes, Bending stress distribution diagrams,	08	18
2.	Shear Stress in Beam Shearing stresses at a section, Derivations of shear stress distribution formula for different sections, shear stress distribution diagrams for common symmetrical sections, Maximum and average shears stresses, Shear connection between flange & web.	08	18
3.	Direct & Bending Stress Eccentric loading, Symmetrical column with eccentric loading about one axis, Symmetrical columns with Eccentric loading about two axis, Unsymmetrical columns with Eccentric loading.	07	14

	Section II					
Module No.	Content	Hours	Weightage in %			
1.	Dams Introduction, Types of dams, Rectangular dam, Stress across the section of the dam, Trapezoidal dam, stability of dam.	08	18			
2.	Introduction, Failure of a column, Assumptions in Eural's Theory, End conditions for long column, Expression for crippling load when both ends of the column are hinges, Expression for crippling load when both ends of the column are Fixed, Expression for crippling load when both ends of the column are Free, Expression for crippling load when one end of the column is fixed and other is hinged, Effective length of column, Limitations of Eural's formula, Rankine's formula.	07	16			
3.	Torsion Derivation of equation of torsion, Assumptions, Application of theory of torsion equation to solid & hollow circular shaft, Torsional rigidity, Power Transmitted by shaft, Polar moment of Inertia.	07	16			

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Torsion Test	02
2.	Fatigue Test	02
3.	Tutorials on Bending Stress in Beam	04
4.	Tutorials on Shear Stress in Beam	04
5.	Tutorials on Direct and Bending Stress, Torsion	04
6.	Tutorials on Dam	06
7.	Tutorials on Column & Strut	04
8.	Tutorials on Torsion	04

Text Book(s):				
Title	Author/s	Publication		
Strength of Materials (SI Units)	Dr. R. K. Bansal	Laxmi Prakashan		

Reference Book(s):

Title	Author/s	Publication
Strength of Materials (SI Units)	R. S. Khurmi	S. Chand & Company Pvt. Ltd.
Strength of Materials (SI Units)	Er. R . K. Rajput	S. Chand & Company Pvt. Ltd.
Mechanics of Structure-Vol. I	Dr. H.J. Shah & S. B.	Charotar Publishing House Pvt.
	Junarkar	Ltd.
Strength of materials	R. Subramanian	Oxford Publications
Strength of materials	S. Ramamrutham	Dhanpat Rai Publishing Company

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcomes:

- apply mathematical knowledge to calculate the deformation behavior of simple structure.
- critically analyze problem and solve the problem related to mechanical elements and analyze the deformation behavior for different types of loads.
- understand the different types of stresses and strains developed in the member subjected to axial, bending, shear & torsional effects.
- understand the physical properties of materials.

Department of Mechanical Engineering

Course Code: SEME2030

Course Name: Non-Cutting Manufacturing Processes

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit Theory Practical Tutoria		Practical		orial	Total		
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand various manufacturing techniques.
- learn the background for higher level subjects in engineering like Production Technology.
- understand the relevance and importance of the Different manufacturing techniques and real-life application in industry.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Manufacturing Processes Basic Introduction, Economics and Technological Definition, Importance of Manufacturing, Classification and Selection of Manufacturing Processes.	02	05		
2.	Patternmaking and Foundry Patterns, Allowances, Types of patterns, Moulding materials, Moulding sands; properties and sand testing: Grain fineness, moisture content, clay content and permeability test. Core materials and core making, Gating & Riser systems, Spure, Gating, Ration, Cupola, Inspection and Cleaning of casting, Casting defects.	12	25%		
3.	Miscellaneous Casting Process Shell moulding, Die casting, investment Casting, Carbon dioxide molding process, Centrifugal casting, Slush casting, Continuous casting process, Advanced technologies in casting.	08	20%		

	Section II					
Module	Content	Hours	Weightage in %			
1.	Gas Welding Principles of gas welding, Types of gases used, Types of flames, Welding techniques, Edge preparation, Equipment used, Torch, Regulators, Welding filler rods, Gas cutting, Principles of gas cutting, Position of torch, Soldering, Brazing, Adhesive bonding.	08	18%			
2.	Electric Arc Welding Principles of electric arc welding, A.C. / D.C. welding, Edge preparation, Equipment used, ISI electrode classification: Designation and selection, Manual metal arc welding, Carbon arc welding, Inert gas shielded arc welding, TIG & MIG, Submerged arc welding, Atomic hydrogen arc welding, Plasma arc welding, Stud arc welding, Arc cutting.	08	18%			
3.	Resistance Welding Principles of resistance welding, Heat balance, Electrodes, Spot welding, Seam welding, Projection welding, Upset welding, Flash welding, Fusion welding processes: Thermit welding, electro-slag welding, Electron beam and laser beam welding.	07	14%			

List of Practical:

Sr	Name of Practical	Hours
No		
1.	Study of different types of patterns & types of molding methods	02
2.	Design of Gating system & Design of Riser	02
3.	To Find out the Moisture Content, Permeability and Hardness of Moulding	04
٥.	Sand	04
4.	Casting Defects, their Causes and Remedies	02
5.	Tutorial on Casting Simulation	04
6.	Study different Welding Processes, Weld Joint Design as per I.S. code and	04
0.	Weld Symbols	04
7.	Gas Welding and Gas Cutting Processes	04
8.	MIG & TIG Welding Process	04
9.	Resistance Welding Process	04

Text Book(s):

Title	Author/s	Publication
Manufacturing Technology Vol. II	P.N. Rao	Tata McGraw Hill
A Textbook of Production Technology	Sharma P. C.	S. Chand

Reference Book(s):

Title	Author/s	Publication
Manufacturing Technology - I	Rao	Tata McGraw Hill
A Textbook of Production Engineering	Sharma P.C.	S. Chand
Manufacturing Processes and Systems	Phillip F., Ostwald, Jairo	Wiley India
Manufacturing Frocesses and Systems	Munoz	whicy maia
Elements of Workshop Technology V. II	Chaudhary	MPP
Manufacturing technology	Rao	Atul
Work shop Technology -1	Hajra	MPP

Web Material Links:

https://nptel.ac.in/courses/112107145

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 for each practical and average of the same will be converted to 10 marks.
- Internal Viva component of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- acquire basic knowledge of various casting processes and to analyze casting defects.
- conduct various experiments on manufacturing processes and to automate them.
- understand the different types of welding processes in depth.
- demonstrate an ability to use manufacturing techniques for economic production.
- choose correct manufacturing process for a particular application.

Department of Mechanical Engineering

Course Code: SEME2041

Course Name: Machine Drawing

Prerequisite Course(s): SEME1010 - Engineering Graphics

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tutorial		Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
00	02	00	01	00	00	50	00	00	00	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the industrial drawing.
- learn a machining and welding symbols.
- know the part and assembly drawings.
- know an application of screw threads, screw fasteners, welding and riveted joints.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Machining Symbols and Surface Roughness Symbols used for machining processes, Symbols used for indication of surface roughness		05		
2.	Limit, Fits and Tolerances Tolerance, Limits, Allowance, Basic Size, Design Size, Actual Size, Unilateral and Bilateral Tolerance and its representation, Fits and its types(Clearance, Transition and Interference), Introduction of Hole Basic and Shaft Basic Method		05		
3.	Screw Threads Forms of screw threads, Representation of external and internal thread, Unified thread, Whitworth thread, Seller thread, British Association thread, Square thread, Acme thread, Knuckle thread, Buttress thread, Right and left hand threads		15		
4.	Screwed Fastening Types of Nuts (Hexagonal, Square, Flanged, Cap, Dome, Capstan, Ring and Wing), Types of Bolt (Hexagonal, Square, Cylindrical, Cup headed, Countersunk headed, Hook, Headless tapered, Eye bolt, Lifting bolt, Stud bolt)		15		

5.	Keys, Cotter and Pin Joint Key and keyways, Types of Keys (Taper Key, Saddle Key, Round or Pin Key, Gib Head Key, Feather or Parallel Key, Woodruff Key), Cotter and Cotter Joint, Pin Joint or Knuckle Joint		10
	Section II		
Module	Content	Hours	Weightage in %
1.	Riveted Joints, Bolted Joints, Welding Joints and Welding Symbols Riveted Joint, Forms of riveted head (Cup, Pan, Conical, Countersunk, Rounded Countersunk and Ellipsoid), Riveted Lap and Butt Joints, Welding Joints and Symbols (Lap, Butt, Tee, Corner or Edge)		15
2.	Drafting Software Introduction of Software, Part Drafting Exercise (2D as well as 3D)		35

List of Practical:

Sr	Name of Practical	Hours
No		
1.	Sheet of Machining Symbols and Surface Textures	02
2.	Sheet of Types of Screw Threads	02
3.	Drafting Exercise of Types of Nuts and Bolts	04
4.	Sheet of Types of Keys, Cotter and Knuckle Joint	04
5.	Sheet of Types of Riveted Joints, Welding Joints and Welding Symbols	02
6.	Sheet of Plummer Block or Pedestal Bearing	02
7.	Drafting Exercise of Part in Drafting software	14

Text Book(s):

Title	Author/s	Publication
Machine	N. D. Bhatt, V. M. Panchal	Charotar Publishing House Pvt.
Drawing	N. D. Bliatt, V. M. Falichai	Ltd.
Machine	N. Sidheshwar, P. Kannaiah, V. V. S.	Tata McGraw Hill Publication
Drawing	Sastry	Tata McGraw Hill Publication

Web Material Links:

• http://nptel.ac.in/syllabus/112106075/

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of practical and noted the same in manual and record book which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal Viva consists of 30 marks.

Course Outcome(s):

- interpret Industrial Drawings.
- interpret Machining and Welding Symbols.
- interpret Part and Assembly Drawings.
- select Screw Threads, Screw Fasteners, Welding and Riveted Joints.

Centre for Skill Enhancement & Professional Development

Course Code: SEPD2010

Course Name: Critical Thinking, Creativity and Decision Making

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)					minati	on Schei	me (Ma	rks)			
Theory	Theory Practical Tutorial (al Cradit		Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Theory Practical Tutorial	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
02	00	00	02	40	60	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- develop a familiarity with the mechanics of critical thinking and logic.
- understand basic concepts of critical and creative thinking.
- explore and understand critical thinking for the purpose of creativity in context of professional, social and personal spectrum.
- explore an application critical thinking and creativity in personal, social, academic, global and profession life.
- understand Decision making as a skill to be learned through critical thinking.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	 Introduction to Critical Thinking Concept and meaning of Critical Thinking Significance of Critical Thinking in personal, social and professional life Thinking with arguments, evidences and language 	08	25
2.	 Applied Critical Thinking Inductive and Deductive Thinking Questioning for Generating Ideas Socratic Questioning and its application 	07	25
	Section II		
Module	Content	Hours	Weightage in %
1.	Conceptual ThinkingSecond order thinking	03	10
	Synthesizing		

	Creative Thinking and Decision Making		
2.	Problem Solving	06	20
	Adapting Various Structures of Decision Making		
	Moral Thinking		
2	Generating and structuring ideas	0.0	20
3.	 Designing and Evaluating the solutions 	06	20
	Case Study		

Text Book (s):

Title	Author/s	Publication
Thinking Skills for Professionals	B. Greetham, Palgrave	Macmillan, 2010

Reference Book(s):

Title	Author/s	Publication
An Introduction to Critical Thinking and	J. Y. F. Lau	John Wiley & Sons., New
Creativity: Think More, Think Better		hercy
Critical Thinking: A Beginner's Guide to	Jennifer Wilson	CreateSpace Independent
Critical Thinking, Better Decision Making and		Publishing Platform, 2017
Problem Solving		
Creativity and Critical Thinking	edited by Steve	Routledge 2013
	Padget	

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Course Outcome(s):

- comprehend the concept and application of critical thinking as well as its applications.
- understand the critical thinking in context of creativity, logical arguments, moral reasoning.
- understand the application of critical thinking for social, academic, global and professional spectrum.
- correlate their thinking skills for better productivity and outcome-based tasks.
- be in a better position to apply 360° analysis of the situation for decision making.

P P Savani University

Integrated Personality Development Course.

Course Code: SEPD3040 Course Name: IPDC-1

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)							
Theory	Practical	cal Tutorial	Credit	storial Cradit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical			CE	ESE	CE	ESE	CE	ESE	Total	
02	00	00	01	40	60	00	00			100	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide students with a holistic education focused on increasing their intelligence quotient, physical quotient, emotional quotient and spiritual quotient
- provide students with hard and soft skills, making them more marketable when entering the workforce
- educate students on their social responsibilities as citizens of India
- provide students with a value-based education which will enable them to be successful in their family, professional, and social relationships.
- teach self-analysis and self-improvement exercises to enhance the potential of the participants.

Lecture No.	Content	Hours	Weightage in %
1.	Remaking YourselfRestructuring Yourself.	02	
2.	Remaking YourselfPower of Habit.	02	
3.	 Remaking Yourself -Developing Effective Habits. 	02	50
4.	Learning from LegendsTendulkar and Ratan Tata	02	
5.	From House To Home Affectionate Relationship	02	
6.	Facing FailuresFactors Affecting Failures.	02	
7.	Facing FailuresFailures are not Always Bad.	02	
8.	Facing FailuresInsignificance of Failures.	02	50
9.	Facing FailuresFailures can be Overcome.	02	
10.	Learning from LegendsYogiji Maharaj and Nelson Mandela.	02	

Course Evaluation:

Theory:

- Continuous Evaluation consists of 40 marks. There will be a mid-term exam which will assess the current progress of students, it assessed out of 20 marks and will be equivalent to 20 marks of the Continuous Course Evaluation (CCE). There will be a submission consisting 10 marks as per the guidelines of course coordinator and average of the attendance consisting 10 marks (minimum 60 percentage attendance is required).
- End semester exam (ESE) part A 30 marks and part B 30 marks.

Course Outcome(s)

- have gained a greater sense of social responsibility
- have gained marketable hard and soft skills that would directly apply to their future careers
- have gained greater insight and ability to navigate their family, social, and professional relationships along with difficult situations which may arise in their life
- have a broader sense of self-confidence and a defined identity
- have greater value for living a moral and ethical life based on principles taught in the course

Department of Mechanical Engineering

Course Code: SEME2910

Course Name: Industrial Exposure

Prerequisite Course(s): --

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
	Theory	Dractical	Tutorial	Putanial Cradit	The	eory	Prac	ctical	Tut	orial	Total
	Theory	ory Practical 1	ctical Tutorial Credit	CE	ESE	CE	ESE	CE	ESE	Total	
Ī	00	00	00	02	00	00	100	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- get exposed to the industrial spectrum.
- learn the mechanisms of industry/ workplace.
- be aware about work culture and policies of industries.

Outline of the Course:

Sr. No	Content				
1.	Selection of Companies				
2.	Company Information collection				
3.	Report Writing				
4.	Presentation & Question-Answer				

Course Evaluation:

Sr. No.	Evaluation criteria						
1	Actual work carried & Report Submission	50					
2	Final Presentation & Question-Answer session	50					
	Grand Total:	100					

Course Outcome:

- get acquainted with the industrial scenario.
- be aware about his future prospects in the respective field.
- gain knowledge of work culture and industrial expectations.

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

3. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references
- Before chapter 1, give page numbers in roman letter

Department of Science & Humanities

Course Code: SESH2022

Course Name: Numerical & Statistical Analysis

Prerequisite Course(s): SESH1020-Linear Algebra & Vector Calculus,

SESH2011-Differential Equations

SESH2031-Differential Methods for Chemical Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)							
Theory	eory Practical	Practical Tutorial Credit	Tutovial	Cnodit	Theory		Practical		Tutorial		Total
Theory			Credit	CE	ESE	CE	ESE	CE	ESE	Total	
03	00	02	05	40	60	00	00	50	00	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide with the knowledge of numerical analysis & statistical methods to the students.
- identify and formulate the engineering problems and obtain their solution.
- inculcate the analytical skills to apply the Numerical & Statistical techniques to the problems of respective field.

Section I				
Module No.	Content	Hours	Weightage in %	
1.	Complex Variables Complex numbers with operators and geometric representation, Analytic function, Derivative of complex function, Cauchy-Riemann equation, Trigonometric and Hyperbolic functions, Complex Integration, Conformal Mapping, Linear functional transformations, Cauchy's Integral, Calculation of residue	10	20	
2.	Numerical Solutions of Linear and Non-linear Equations Errors and Their computations, General error formula, Bisection Method, Iteration Method, Newton-Raphson Method, Solution of system of non-linear equation, Solution of linear system, Gauss Elimination	6	13	
3.	Numerical Differentiation and Integration Interpolation, Finite Differences, Error in numerical differentiation, Cubic Splines Method, Differentiation Formulae, Numerical solution of ODEs, Picard's Method, Euler's Method, Runge-Kutta Method, Numerical Integration, Trapezoidal Rule, Simpson's 1/3-rule, Simpson's 3/8-rule, Euler-Maclaurin Formulae	7	17	

	Section II				
Module	Content	Hours	Weightage in %		
1.	Basics of Statistics Elements, Variables, Observations, Quantitative and Qualitative data, Cross-sectional and Time series data, Frequency distribution, Dot plot, Histogram, Cumulative distribution, Measure of location, Mean, Median, Mode, Percentile, Quartile, Measure of variability, Range, Interquartile Range, Variance, Standard Deviation, Coefficient of Variation, Regression Analysis, Regression line and regression coefficient, Karl Pearson's method.	7	15		
2.	Probability Distribution Introduction, Conditional probability, Independent events, independent experiments, Theorem of total probability and Bayes' theorem, Probability distribution, Binomial distribution, Poisson distribution, Uniform distribution, Normal distribution.	8	18		
3.	Testing of Hypothesis Introduction, Sampling, Tests of significance for parametric test, Null Hypothesis, Type 1 and Type 2 errors, Level of significance, Chi-square test, Student's t-test, Seducer's f-test	7	17		

List of Tutorials:

Sr No	Name of Tutorial	Hours
1.	Complex Variables-1	4
2.	Complex Variables-2	2
3.	Numerical Solutions of Linear and Non-linear Equations-1	2
4.	Numerical Solutions of Linear and Non-linear Equations-2	4
5.	Numerical Differentiation and Integration-1	2
6.	Numerical Differentiation and Integration-2	2
7.	Basics of Statistics-1	2
8.	Basics of Statistics-2	4
9.	Probability-1	2
10.	Probability-2	2
11.	Testing of Hypothesis-1	2
12.	Testing of Hypothesis-2	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering	Erwin Kreyszig	Wiley India Pvt. Ltd., New
Mathematics		Delhi.
Probability and Statistics for	Richard A. Johnson	Pearson India Education
Engineers	Irwin Miller, John Freund	Services Pvt. Ltd., Noida.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers, New Delhi
Advanced Engineering	R. K. Jain, S. R. K.	Narosa Publishing House, New
Mathematics	Iyengar	Delhi
Introductory Methods of	S. S. Sastry	PHI Learning Pvt. Ltd.
Numerical Analysis		New Delhi

Web Material Links:

- 1) http://nptel.ac.in/courses/111106094/
- 2) http://nptel.ac.in/courses/111106084/
- 3) http://nptel.ac.in/courses/111105035/
- 4) http://nptel.ac.in/courses/111101003/
- 5) http://nptel.ac.in/courses/111105090/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 Marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

- derive numerical solution of linear and non-linear system of equation.
- acquire knowledge of finite differences, interpolation, numerical differentiation and numerical integration.
- select appropriate method to collect data and construct, compare, interpret and evaluate data by different statistical methods.
- apply concept of probability in decision making, artificial intelligence, machine learning etc.

Department of Mechanical Engineering

Course Code: SEME2050

Course Name: Forming and Machining Processes

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (I			me (Ma	rks)			
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
THEOLY	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basic operation involved in various machines.
- understand the machining science using conventional machines.

	Section I				
Module	Content	Hours	Weightage in %		
1.	Mechanical working of Metals Introduction, Classification of Forming Processes, Mechanics of Metal Working, Various Temperatures in Metal Working, Cold and Hot Working, Formability, Strain Rate Effects on metal forming, Effects of Metallurgical Structure on Metal Forming, Hydro Static Pressure, Residual Stresses.	07	16		
2.	Metal Rolling Introduction and classification of Rolling processes, Principles of Metal Rolling, Simplified Analysis of Rolling Load, Various Rolling Parameters, Defects in rolled products and remedies of it.	03	07		
3.	Forging Introduction and classification of Forging Processes, Various Forging operations, Forging Die Materials and Lubrication, Forge ability, Forging, Defects and remedies.	04	08		
4.	Extrusion Introduction and classification of Extrusion Processes, Various Extrusion Operations, Metal Deformation and Forces in Extrusion. Materials and Lubrication considerations in Extrusion Process, Extrusion Defects, Extrusion of Tubing, Production of Seamless Pipe and Tubing. Drawing of Rods, Wires and Tubes, Sizing.	05	12		

		ı	
	Press Working and Dies Types of presses drive and feed mechanisms, press tools.		
5.	Various press working operations and its parameters,	03	07
	Elements of press, Various Metal Forming Operations. Stock strip layout, study of sheet metal nesting software.		
	Section II		
Module			Weightage
No.	Content	Hours	in %
- 1101	Turning Machine		/ 0
	Engine Lathes, Construction, Arrangement and Principle, Units		
	of engine lathes, Type and size range of engine lathes;		
1	Operations carried on engine lathe, Attachment extending the	00	17
1.	processing capacities of engine lathes; Description of other	80	17
	types of lathes, Plain turning lathes, Facing lathes, Multiple tool		
	lathes; Simple purpose lathes, Turret lathes, Horizontal and		
	Vertical lathes.		
	Milling Machines		
	Purpose and types of milling machines, general purpose milling		
2.	machines. Different types of milling operations. Milling cutters,	06	15
	attachments extending the processing capabilities of general		
	purpose milling machines.		
2	Planers, Shapers and Slotters	0.0	0.6
3.	Classification, Attachments extending the processing capacities of each.	03	06
	Sawing and Broaching Machines		
	Metal sawing – classification; Reciprocating sawing machines,		
4.	Circular sawing machines, Band sawing machines. Types of	02	04
	broaching machines, Advantages and Limitations of Broaching.		
	Drilling, Boring, Grinding Machines and Abrasives		
	Application of drilling and boring machines. Upright drill		
5.	processes, radial drills, Horizontal and Precision Boring		
	Machines. Classifications of grinding machines, Cylindrical	04	08
	grinders, Internal grinders, Surface grinders, Tool and Cutter		
	grinders. Surface finishing, Abrasives, Manufacture of grinding		
	wheels.		

List of Practical:

Sr	Name of Practical	Hours
No		
1.	Rolling Operation Using Three Roller Bending Machine	02
2.	Forging Operation	02
3.	Bending Operation Using Hydraulic Pipe Bender	02
4.	Press and Press Working Operations	04
5.	Turning practices for Step turning and thread cutting	06
6.	Capstan and Turret Lathe	02
7.	Spur Gear Cutting on Milling Machine	04

8.	Planers, Shapers and Slotters Machine	04
9.	Drilling machine	02
10.	Grinding machine	02

Text Book(s):

Title	Author/s	Publication
Manufacturing Processes vol I	O.P. Khanna	Dhanpatrai Publication
Workshop Technology Vol. I, II & III	WAJ Chapman	Elseveir

Reference Book(s):

Title	Author/s	Publication	
Workshop Technology Vol. II	Hajra & Choudhari	Media promoters &	
workshop rechnology vol. ii	Haji a & Choudhai i	publishers pvt. Ltd.	
Metal Cutting Principles, 2E	Shaw	Oxford	
A Textbook of Production Technology	Sharma P.C.	S Chand	

Web Material Links:

https://nptel.ac.in/courses/112107145

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- understand metal forming processes like forging, drawing, rolling, extrusion, and deep drawing.
- understand the basic concept of machining operations of different machines.
- analyze any conventional machining processes.
- identify and suggest correct manufacturing process for particular application.
- generate the sequence of machining operation to produce the end product.
- judge the limitations and scope of machines to perform variety of operations.
- understand metal forming processes like forging, drawing, rolling, extrusion, and deep drawing.

Department of Mechanical Engineering

Course Code: SEME2060 Course Name: Fluid Mechanics Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basic fundamentals of Fluid Mechanics, which is used in the applications of Aerodynamics, Hydraulics, Marine Engineering, Gas dynamics etc.
- learn Fluid Properties.
- understand the importance of flow measurement and its applications in Industries and to obtain the loss of flow in a flow system.

Section I				
Module No.	Content		Weightage in %	
1.	Properties of Fluids Density, Viscosity, Surface Tension, Compressibility, Capillary, Vapour Pressure, Bulk Modulus, Cavitation, Classification of Fluids	02	5	
2.	Fluid Statics Force and Pressure, Pascal's law of Pressure at a point, Pressure measurement by Manometers – U tube, Inclined U tube and Differential, Centre of Pressure, Hydrostatic forces on surface – Vertical, Horizontal and Inclined, Forces on curved Surfaces, Buoyancy and Buoyant Force, Centre of Buoyancy and Meta Centre, Determination of Metacentric Height, Stability of Floating and Submerged Body, Position of metacenter relative to Centre of buoyancy.	07	15	
3.	Fluid Kinematics Steady and Unsteady Flow, One – two and three Dimensional Flow, Uniform and Non Uniform Flow, Rotational and Irrotational Flow, Stream Lines and Stream Function, Velocity Potential Function, Relation between stream and velocity	07	15	

	potential function, Flow nets, Continuity Equation for 2D and		
	3D flow in Cartesian co-ordinates system		
4.	Fluid Dynamics Newton's law of motion, Euler's Equation and its applications, Bernoulli's Equation and its applications, Momentum Equation, Pitot Tube, Determination of volumetric flow with pitot tube, Principle of Venturimeter, Pipe Orifice and Rotameter.	06	15
	Section II	1	
Module No.	Content	Hours	Weightage in %
1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05	10
2.	Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels.	09	20
3. 4.	Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift, Separation of Boundary layer, Streamlined and Bluffed Bodies.		10

List of Practical:

Sr No	Name of Practical	
1.	Determine metacentric height of floating body.	
2.	Measurement of pressure using different types of manometers.	
3.	Determine Co-efficient of Discharge by venturimeter, Orificemeter and	
	Rotameter.	
4.	Verification of Bernoulli's apparatus.	02
5.	Measurement of velocity of flow using Pitot tube.	02
6.	Measurement of Friction factor for Different pipes.	04
7.	Measurement of viscosity using Redwood Viscometer.	02
8.	Determine discharge through triangular notch.	02
9.	Determine discharge through trapezoidal notch.	02
10.	Determine discharge through rectangular notch.	02

	11.	Determine different flow patterns by Reynolds's apparatus.	02
Ī	12.	Determine friction loss for different pipes fittings	02

Text Book(s):

Title	Author/s	Publication		
Textbook of Fluid Mechanics and Hydraulic	R. K. Bansal	Laxmi Publications		
Machines	K. K. Dalisai	Laxiiii Fublications		
Introduction to Fluid Mechanics and Fluid	S.K.Som &	Tata McGraw Hill		
Machines	Biswas.G	Publication		

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics	Frank M. White	Tata McGraw Hill Publication
Fluid Mechanics	R.K.Rajput	Schand Publication

Web Material Links:

http://nptel.ac.in/courses/112105171/1

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 15 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 10 marks during End Semester Exam.

Course Outcome(s):

- understand fundamentals of fluids.
- analyze various flow problems and flow characteristics.
- determine major and minor losses through different pipes.
- apply the concept of fluid mechanics to design various system.

Department of Mechanical Engineering

Course Code: SEME2070

Course Name: Mechanical Measurement and Metrology

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week)				Examination Scheme (Marks)					
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- know various types and methods of measurement.
- assess the suitability of measuring instruments.
- describe the basic concepts of metrology.
- know how to operate different types of mechanical measuring instruments.
- explain the different instruments used in industry.
- evaluate quality of surface produced using various methods of measurements.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Principles of Metrology Concept of Metrology, Need for inspection, Linearity, Repeatability, Sensitivity and readability, Precision & Accuracy, Standards of measurements.	02	05
2.	Screw threads and gear Metrology Measurement of Screw thread: Screw terminology, Errors in threads, measuring elements of the internal and external threads. Measurement of Gear: Introduction and Classification of gears, Forms of gear teeth, Gear tooth terminology, Measurement and testing of spur gear: Various methods of measuring tooth thickness, tooth profile and pitch, Gear Errors.	08	15
3.	Surface Roughness Metrology Introduction, Surface Texture, Methods of Measuring Surface finish, Comparison Methods and Direct Instrument Measurement, Sample Length, Numerical Evaluation of Surface	04	09

	Texture, Indication of Surface roughness Symbols used, Adverse effects of poor surface finish		
	Straightness, Flatness, Squareness, Parallelism and		
4.	Machine Tool Tests Introduction, Measurement of Straightness, Flatness, Squareness and Parallelism, run out and concentricity, Tool makers microscope, Interferometry and its use in checking flatness, surface contour, parallelism etc., Interferometers and optical flats, Introduction to Machine tool testing; Various Alignment test on lathe, Milling Machine, Drilling Machine etc.	05	12
5.	Miscellaneous Metrology Measurement of Force, Torque, Power, Measurement of displacement, Velocity and Acceleration, Measurement of Speed and Frequency	04	09
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Measurement Concept Economics of measurement, Need of mechanical measurement, Basic definitions: Hysteresis, Linearity, Resolution of measuring instruments, Threshold, Drift, Zero stability, loading effect and system response. Source of Errors and their classification. Methods of measurement and performance characteristics	04	09
2.	Linear Measurements Precision and Non-precision linear Measurements, Vernier caliper, Micrometer, Use of End standard – Slip Gauge, Indian standard on Slip gauge, Care and use of slip gauge for workshop and inspection purpose, Telescopic gauge, Comparators.	06	14
3.	Angular and Taper Measurements Introduction; Working principle and construction of Angular Measuring instruments like Protractors, Sine bars, Sine Centre, Angle gauges, Spirit level, Clinometers, Angle dekkor, Taper Measuring Instruments: Measurement of taper shafts and holes	04	09
4.	Temperature measurement Temperature scales, Temperature measuring devices, Methods of Temperature Measurement, Expansion Thermometers; Filled System thermometers; Electrical Temperature Measuring Instrument, Pyrometers; Calibration of Temperature Measuring Instruments.	04	09
5.	Inspection Technologies History of Coordinate Measuring Machines, Important feature of CMM, CMM construction, CMM Operation and Programming, Performance of CMM, Possible causes of errors in CMM,	04	09

I I	ger type and Measuring type probes in computer rolled CMM, Accuracy Specification for CMM, Calibration	
of C	MM, CMM Applications and Benefits, Role of computer in of Metrology	

List of Practical:

Sr No	Name of Practical	Hours
1.	Study of various instrument characteristics	02
2.	Study, Use and calibration of Linear Measuring Instruments	08
3.	Study and use of slip gauge	02
4.	Study of angle measurement using (a) Bevel Protractor (b) Combination	08
4.	Set and (c) Sine Bar	00
5.	Study of Temperature Measurement	02
6.	Study of Surface Roughness Tester	02
7.	Study of Gear Tooth Measurement	02
8.	Study Strain gauge Transducer	04
9.	Study of Coordinate Measuring Machines (CMM) (Industrial Visit)	-

Text Book(s):

Title	Author/s	Publication
Textbook Of Metrology	M. Mahajan	Dhanpat rai & Co.
Mechanical Measurements & Control	D. S. Kumar	Metropolitan books co pvt ltd

Reference Book(s):

Title	Author/s	Publication	
Mechanical Measurement and	R K Jain	Khanna Publisher	
Metrology	K K Jaiii	Kliaillia Fublisilei	
Mechanical Measurements	R K Rajput	Kataria Publication	
and Instrumentations	K K Kajput		
Mechanical Measurements	Beckwith & Buck	Narosa publishing	
Mechanical Measurements	Deckwidi & Duck	House	
Metrology and Measurement	Anand Bewoor & Vinay Kulkarni	McGraw-Hill	

Web Material Links:

• http://nptel.ac.in/courses/112106179

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- describe basic concepts of Metrology.
- select linear measuring instrument for measurement of various components.
- select angular and taper measurement devices for measurement of various components.
- distinguish between various screws by measuring their dimensions.
- understand different gears through measurement of various dimensions of gears.
- measure surface finish of the component produced.
- describe basic concepts of mechanical measurement and errors in measurements.
- select appropriate temperature measuring device for various applications.
- describe methods of measurement for various quantities like force, torque, power, displacement, velocity and acceleration.
- use Coordinate Measuring Machines (CMM) in industry.

Department of Mechanical Engineering

Course Code: SEME2081

Course Name: Kinematics of Machinery

Prerequisite Course(s): SECV1030-Engineering Mechanics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Cradit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical Tutorial Credit	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	00	01	05	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the leaners to learn:

- basics types of mechanism, degree of freedom, joints.
- about velocity and acceleration analysis for different mechanism.
- about kinematic analysis of cam and follower motion.
- about types of belts, ropes, chain and gears drives and its applications.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Basics of Mechanisms Introduction, Mechanism and machine, Rigid and resistant body, Link, Kinematic pair, Types of motion, Degrees of freedom (mobility), Classification of kinematic pairs, Kinematic chain, Linkage, Mechanisms, Kinematic inversion, Inversions of slider crank chain, Synthesis of Mechanism, Double slider-crank chain, Quick return mechanism, Limiting Positions and Mechanical Advantage.	06	10
2.	Velocity Analysis Vectors, Displacement of a rigid body, Relative displacement, Definition of velocity, Angular velocity, Rotation of a rigid body, Translation and rotation of a rigid body, Relative velocity method (graphical and analytical), Instantaneous axes of motion, Properties of instantaneous centers, The Aronhold - Kennedy theorem of three centers, Velocity analysis by instantaneous centers. The line-of-centers method, Velocity analysis by components, Velocity images, Velocity diagrams.	12	20

	Acceleration Analysis		
	Definition of acceleration, Angular acceleration, A general case		
3.	of acceleration, Radial and transverse components of	12	20
	acceleration, The coriolis component of acceleration, Examples		
	of acceleration analysis, Acceleration diagrams.		
	Section II		
Module	Content	Hours	Weightage
No.	Content	nours	in %
	Kinematics of Belts, Ropes and Chain Drives		
	Introduction, Belt and rope drives, Open and crossed belt		
	drives, Velocity ratio, Slip, Materials for belt and ropes, Law of		
1.	belting, Length of belt, Ratio of friction tensions, Power	07	10
	transmitted, Centrifugal effect on belts, Maximum power		
	transmitted by a belt, Initial tension, Creep, Chains, Chain		
	length, Angular speed ratio, Classification of chains.		
	Kinematics of Gears		
	Introduction, Classification of gears, Gear terminology, Law of		
	gearing, Velocity of sliding, Forms of teeth, Cycloidal profile		
	teeth, Involute profile Teeth, Comparison of Cycloidal and		
2.	involute tooth forms, Path of contact, Arc of contact, number of	15	20
	pairs of teeth in contact, Interference in involute gears,		
	Minimum number of teeth, Interference between rack and		
	pinion, Undercutting, Introduction to helical, Spiral, Worm,		
	Worm gear and bevel gears.		
	Kinematics of Cams		
3.	Introduction, Types of cams, Types of followers, Cam	08	20
3.	terminology, Displacement diagrams, Motions of the follower,	UB	20
	Graphical construction of cam profile, High Speed CAM.		

List of Tutorials:

Sr No	Name of Tutorial				
1.	Velocity diagram using Instantaneous center method	03			
2.	Velocity and acceleration analysis of simple mechanism	02			
3.	Velocity and acceleration analysis of mechanism involving coriolis	02			
5.	component	02			
4.	Layout of cam profile for reciprocating knife edge follower	02			
5.	Layout of cam profile for offset reciprocating roller follower	02			
6.	Layout of cam profile for flat faced reciprocating follower	02			
7.	Layout of cam profile for oscillating follower	02			

Text Book(s):

Title	Author/s	Publication		
Theory of Machines	S. S. Rattan	Tata McGraw Hill Education		
Theory of Machines and	John J. Uicker, Gordon R.	Oxford University Press		
Mechanisms	Pennock, Joseph E. Shigley	Oxford University Press		

Reference Book(s):

Title	Author/s	Publication		
Mechanism and Machine Theory	J.S Rao, R.V Dukkipati	Wiley Eastern Ltd.		
Theory of Mechanism and Machine	Ghosh A., Malick A.K	East-West Pvt. Ltd.		

Web Material Links:

• http://nptel.ac.in/courses/112104121/1

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of Performance of Tutorial which should be evaluated out of 10 marks for each Tutorial and average of the same will be converted to 10 marks.
- Internal Viva consists of 20 marks.
- Model of any mechanism having weightage of 10 marks.
- Problem Solution/Quiz of 10 marks during End Semester Exam.

Course Outcome(s):

- demonstrate an understanding of the concepts of various mechanisms and pairs.
- do velocity and acceleration analysis of different mechanism.
- design a layout of cam and follower for specific motion.
- demonstrate an understanding of principle of gears.

Department of Applied Sciences & Humanities

Course Code: SESH2211

Course Name: Basics of Electrical & Electronics Prerequisite Course(s): SESH1210-Physics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exa	minati	on Schei	me (Ma	rks)			
Theory	Practical	Tutorial	Tutorial Credit		eory	Prac	ctical	Tut	orial	Total		
Theory	riacticai i utoriai crec		Tutoriai	ai Tutoriai	ii Tutoriai C	Credit	CE	ESE	CE	ESE	CE	ESE
00	02	00	01	00	00	50	00	00	00	50		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basic fundamental electronic circuit.
- learn to use common electronic instrumentation.
- explain the construction and application of standard circuit configurations and identify the component types and connections used to build functioning electronic circuits.
- understand components of instruments, terminology and applications.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Electrical Instrument Multimeter-Application, Sensitivity, Merits And Demerits. Cathode Ray Oscilloscope-Working, Application, Understanding Different Type Of Waveforms Formed On Cro. Understanding The Bread Board Connection. Electrical Component, Lamped Circuit Element-Classification Of Resistors, Carbon Color Coded Resistance, Capacitor, Inductor Kirchhoff's Laws		15
2.	Three phase AC circuit Advantage, generation, phase sequence, balance load, relationship between line and phase value, power measurement in balanced three phase circuit.		20
3.	Electrical safety Electrical wiring, Different type of wiring system, Safety precaution in handling electrical appliances, Cause of electric shock, Types of earthing, Circuit protection device, Earthing, Difference between Fuse and MCB.		15

	Section II		
Module No.	Content	Hours	Weightage in %
1.	Logic Gates & Family Classification of logic gates and ICs (74XX), symbols and truth table verification of basic logic gates, multiple input basic logic gates, Universal gates, Implementation of different Boolean functions using various gates.		25
2.	PCB Designing Drawing and printing layout on board, photo etching process, masking process, PCB manufacturing techniques, Software		25

List of Practical/Exercise(s):

Sr. No	List of Practical/Exercises	Hours
1.	Identify various tools used for wiring	02
2.	Identify the symbols used in electrical circuit diagrams	02
3.	Verification of truth tables of all logic gates	02
	Verification of De Morgan's theorem, the postulates of Boolean algebra and	04
4.	Realization of Sum of Product and Product of Sum expression using	
	universal gates	
5.	Implementation of the given Boolean function using logic gates	02
6.	Understanding Electricity lab	02
7.	Understanding the breadboard connection.	02
8.	Understanding seven segment led using bread board	02
9.	Understanding Network Theorem	02
10.	Study full wave & Half wave rectifier	02
11.	To Study and calculate Ripple factor and efficiency of various Rectifier	03
12.	PCB design of a small circuit with its layout using tapes & etching in the lab	05

Text Book(s):

Title	Author/s	Publication
Making Printed Circuit Boards	Jan Axelsen	Mc GrawHill
Fundamentals of Digital Circuits	A.Anand Kumar	Prentice-hall of India Pvt. Ltd
Electronics Instrumentation	H S Kalsi	ТМН

Reference Book(s):

Title	Author/s	Publication
Digital Electronics and Circuit design	Malvino & Leach	TMN
Everyday Electronics Data Book	Mike Tooley	ВРВ
Electrical Technology	B.L.Theraja	S.Chand

Web Material Links:

- https://nptel.ac.in/courses/108108076/
- http://www.nptelvideos.in/2012/11/basic-electronics-prof-tsnatarajan.html
- http://vlab.co.in/

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of practical and noted the same in the manual
 and record book which should be evaluated out of 10 marks for each practical and average of
 the same will be converted to 20 marks.
- Internal viva consists of 30 marks.

Course Outcome(s):

- use the techniques, skills and modern engineering tools necessary for engineering practice
- identify and understand importance of various electrical and electronics components.
- acquire knowledge about analog and digital communication.
- develop the idea of identifying, analyzing and designing combinational circuits.

Integrated Personality Development Course

Course Code: SEPD3050 Course Name: IPDC-2

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exa	aminati	on Schei	ne (Mai	rks)				
m)	Described 7	Trake and all	C d:+	The	eory	Prac	ctical	Tut	orial	Т-4-1			
Theory	Practical	Tutoriai	Tutoriai	ai Tutoriai	Tutorial Credit	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	01	40	60	00	00			100			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide students with a holistic education focused on increasing their intelligence quotient, physical quotient, emotional quotient and spiritual quotient.
- provide students with hard and soft skills, making them more marketable when entering the workforce.
- educate students on their social responsibilities as citizens of India
- provide students with a value-based education which will enable them to be successful in their family, professional, and social relationships.
- teach self-analysis and self-improvement exercises to enhance the potential of the participants.

Lecture No.	Content	Hours
1.	Remaking Yourself Restructuring Yourself.	02
2.	Essentials of Profession Writing a Resume	02
3.	Financial Wisdom Basics of Financial Planning.	02
4.	Financial Wisdom Financial Planning Process.	02
5.	From House to Home Listening & Understanding.	02
6.	From House to Home Forgive & Forget.	02
7.	From House to Home Bonding the Family.	02
8.	Soft Skills Networking, Decision making & Leadership	02

9.	Soft Skills Teamwork, Harmony & Adaptability.	02
10.	Mass Management Project Management.	02
11.	My India My Pride Glorious Past (Part -1)	02
12.	My India My Pride Glorious Past (Part -2)	02
13.	My India My Pride Present Scenario.	02
14.	My India My Pride An Ideal Citizen-1	02
15.	My India My Pride An Ideal Citizen-2	02

Course Evaluation:

Theory:

- Continuous Evaluation consists of 40 marks. There will be a mid-term exam which will assess the current progress of students, it assessed out of 20 marks and will be equivalent to 20 marks of the Continuous Course Evaluation (CE). There will be a submission consisting 10 marks as per the guidelines of course coordinator and average of the attendance consisting 10 marks (minimum 60 percentage attendance is required).
- End semester exam (ESE) section I (30 marks) and section II (30 marks).

Course Outcome(s):

- have gained a greater sense of social responsibility.
- have gained marketable hard and soft skills that would directly apply to their future careers.
- have gained greater insight and ability to navigate their family, social, and professional relationships along with difficult situations which may arise in their life.
- have a broader sense of self-confidence and a defined identity.
- have greater value for living a moral and ethical life based on principles taught in the course.

Center for Skill Enhancement and Professional Development

Course Code: SEPD3030

Course Name: German Language

Prerequisite Course(s): Foreign Language

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	02	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- develop and integrate the use of the four language skills i.e. listening, speaking, reading and writing.
- use the language effectively and appropriately on topics of everyday life situations.
- develop an interest in the appreciation of German.
- develop an intercultural awareness.
- enhance the ability of the candidates to express their ideas and feelings in their own words and for them to understand the use of correct language.
- appreciate the language as an effective means of communication.
- understand language when spoken at normal conversational speed in everyday life situations.
- understand the basic structural patterns of the language, vocabulary and constructions.

	Section I								
Module	Content	Hours	Weightage						
No.	Content	Hours	in %						
1.	 Introduction to German Alphabets German accents German Numbers What are the similarities and differences between English and German? Greetings 	2	15						
2.	German Time ◆ Basic Introduction	2	08						
3.	Vocabulary part-1The days of the weekThe months of the year	2	05						

	SeasonsDirections		
	Weather		
	Vocabulary part-2		
4.	 Family Colors and Shapes Day/time indicators Body parts 	2	07
	Clothing Vocabulary Part-3		
5.	 Food and Meals Fruits, Vegetables and Meats Sports and Hobbies 	2	05
6.	TransportationHouse and Furniture	2	05
7.	School SubjectPlacesCommon Expressions	2	05
	Section II	•	
Module No.	Content	Hours	Weightage in %
	German grammar		
1.	 Verb Sein (to be) Verb Haben (to have) Introduction of Regular verbs and Irregular verb Konjugation of Regular verb First group verbs('EN' group) 	2	10
2.	 Konjugation of Regular verbs Second group verbs ('Ten/Den' group) Konjugation of Irregular verbs Third group verbs (Stem change verb) Fourth group verbs (Spell Change Verb) 	2	10
3.	 Nicht trennbare und trennbare Verben Die Modalverben Personalpronomen-Nominativ 	2	10
4.	 W-Frage Ja/Nein-Fragen Nomen und Artikel-Nominativ Die Anrede 	2	10
5.	 Nomen-Genusregein Adjektiv Nomen und Artikel-Akkusativ Personalpronomen-Akkusativ 	2	10
6.	 Practice of Writing Practice of Speaking 	2	-
7.	Practice of Listening	2	-
8.	Practice of Reading	2	-

Text Book(s):

Title	Author/s	Publication
Namaste German	Yoshita Dalal	Yoshita Dalal

Reference Book(s):

Title	Author/s	Publication
Fit In Deutsch	Hueber	Goyal Publication

Web Material Links:

- https://www.youtube.com/watch?v=iGovllrEsF8&list=PLRps6yTcWQbpoqIOCmqM eI1HLnLIRmO t
- https://www.youtube.com/watch?v=GwBfUzPCiaw&list=PL5QyCnFPRx0GxaFjdAVkx7K9TfEklY4sg

Course Evaluation:

Theory:

- Continuous Evaluation consists of a Test of 30 marks and 1 hour of duration.
- German Speaking Exam consists of 10 marks.
- End Semester Examination will consist of 60 marks Exam.

Course Outcome(s):

- demonstrate speaking, reading, writing and listening in German.
- understand German Technology.
- communicate easily in four Language and they can get good job in German Company.
- demonstrate the level of proficiency necessary to enable them to function in an environment where German is used exclusively.

THIRD YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL ENGINEERING PROGRAMME AY:2020-21

					Teach	ing Schem	e			E	Examii	nation	Schen	ne	
Sem	Course Code	Course Title	Offered By	Contact Hours				Credit	Theory		Practical		Tuto	orial	T-4-1
	Goue		23	Theory	Practical	Tutorial	Total	Creatt	CE	ESE	CE	ESE	CE	ESE	Total
	SEME3011	Heat Transfer	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME3021	Fluid Machines	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME3031	Dynamics of Machinery	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME3041	Thermal Engineering	ME	3	0	0	3	3	40	60	0	0	0	0	100
5	SEME3051	Production Technology	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEPD3010	Professional Communication & Soft Skills	SEPD	1	2	0	3	2	0	0	50	50	0	0	100
	SEME3910	910 Summer Training					2	0	100	0	0	0	0	0	100
		Elective-I		2	0	2	0	0	100	0	0	0	0	0	100
						Total	28	23							1000
	SEME3060	Design of Basic Machine Elements	ME	3	0	1	4	4	40	60	0	0	50	0	150
	SEME3071	Internal Combustion Engine & Refrigeration & Air Conditioning	ME	4	2	0	6	5	40	60	20	30	0	0	150
	SEME3080	Computer Aided Design & Manufacturing	ME	3	2	0	5	4	40	60	20	30	0	0	150
_	SEME3090	Industrial Engineering	ME	3	0	0	3	3	40	60	0	0	0	0	100
6	SEME3101	Power Plant Engineering	ME	3	0	1	4	4	40	60	0	0	20	30	150
	SEPD3020	Corporate Grooming & Etiquette	SEPD	1	2	0	3	2	0	0	50	50	0	0	100
	SEPD3030	Foreign Language (German)	SEPD		2		2	2	40	60	0	0	0	0	100
		Elective-II		3	0	0	3	3	40	60	0	0	0	0	100
						Total	30	27							1000

	Elective Courses													
Offered	Course	Department Elective			ing Scheme			Examination Scheme						
from	Code	Course Title	Contact Hours Credit				Credit		eory	Practical Tutoria				Total
Sem.	Gode		Theory	Practical	Tutorial	Total	Greate	CE	ESE	CE	ESE	CE	ESE	Total
	SEME3512	Advanced Manufacturing Technology	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3521	Applied Thermodynamics	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3530	Estimation & Costing	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3551	Electrical Technology	3	0	0	3	3	40	60	0	0	0	0	100
5	SEME3560	Industrial Maintenance & Safety	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3570	Mechatronics	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3581	Plastics, Ceramics & Composites	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3590	Course by Industrial Expert	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3541	Design of Pressure Vessel & Piping	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3591	Fuels & Combustion	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3602	Gas Dynamics & Jet Propulsion	3	0	0	3	3	40	60	0	0	0	0	100
6	SEME3610	Product Development & Value Engineering	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3620	Production Management	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3631	Automobile Engineering	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3640	Quality Engineering	3	0	0	3	3	40	60	0	0	0	0	100

Department of Mechanical Engineering

Course Code: SEME3011 Course Name: Heat Transfer

Prerequisite Course(s): SEME2011-Engineering Thermodynamics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				e (Hours/Week) Examination Scheme (Marks)						
Theory	Practical	Tutorial	utorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- introduce and explain basic concept, principles and modes of heat transfer.
- calculate basis calculation based on heat transfer in various applications.
- calculate basis calculation applied in heat exchanger design.
- learn about analysis and design aspects in various engineering systems related to conduction, convection and radiation heat transfer.

	Section I			
Module	Content	Hours	Weightage	
No.			in %	
1.	Introduction Modes of Heat Transfer – Conduction; Convection and Radiation, Thermal Conductivity, Effect of temperature on thermal conductivity, derivation of generalized equation in Cartesian, cylindrical and spherical coordinates and its reduction to specific cases, General Laws of Heat Transfer.	04	10	
2.	Steady State Heat Conduction Fourier's Law, One Dimensional Steady State Conduction through Plane and Composite Wall; Plane and Composite Cylinder; Plane and Composite Sphere, Critical Radius of Insulation for Cylinder and Sphere, Overall Heat Transfer Co-efficient.	10	15	
3.	Unsteady State Heat Conduction (Trasient)			
4.	Heat Transfer from Extended Surfaces (Fins) Types of Fins, Heat Transfer through Rectangular Fins, Infinitely Long Fins, Fins Insulated at tip and fins losing the heat from the tip, Efficiency and Effectiveness of Rectangular Fins, Biot Number	08	15	

	Section II		
Module No.	Content	Hours	Weightage in %
110.	Forced and Free Convection		111 70
1.	Newton's Law of Cooling, Dimensional Analysis applied for free and forced convection, Dimensionless Numbers and their physical significance, Energy integral equation of the boundary layer on a flat plate for forced convection, Empirical Correlations and their uses for free and forced convection, Thermal and Hydro Dynamic Boundary layer, Free Convection from vertical flat plate, Blasius Solution, General Solution for Von-Karman integral momentum equation.	12	15
2.	Radiation Absorptivity, Reflectivity and Transmissivity; Black, Grey and White Body; Emissivity and Emissive Power; Laws of Radiation – Planck's, Kirchoff's, Stefan Boltzmann, Wein's Displacement Law; Lambert Cosine Law; Radiation Shape Factor; Heat radiate between black bodies; Heat radiate between non black bodies, parallel plates and infinite long cylinders.	07	15
3.	Heat Exchangers Classification, Heat Exchanger Analysis, LMTD and e-NTU for parallel and counter flow heat exchanger, Fouling Factor, Correction Factor for Multi passes arrangements, Introduction of Heat Pipe and Compact Heat Exchanger.	07	15
4.	Two Phase Heat Transfer Fundamentals of Boiling and Condensation, Pool Boiling and its types, Condensation of vapour, Film wise and Drop wise condensation.	04	05

List of Practical:

Sr No	Name of Practical	Hours
1.	Thermal Conductivity of Composite Wall	02
2.	Thermal Conductivity of Insulating Powder	02
3.	Heat Transfer from a Pin Fin	02
4.	Heat Transfer by Unsteady state conduction	04
5.	Heat Transfer by Free Convection	04
6.	Heat Transfer by Forced Convection	04
7.	Measurement of Emissivity	02
8.	Measurement of Stefan Boltzmann Constant	02
9.	Heat Transfer in Tubular (Parallel and Counter Flow) Heat Exchanger	04
10.	Heat Transfer in Plate Heat Exchanger	02
11.	Critical radius of insulation.	02

Text Book(s):

Title	Author/s	Publication
Heat and Mass Transfer	Yunus A Cengen, Afshin J Ghajar	McGraw Hill Eduction
Heat Transfer	P K Nag	McGraw Hill Publication

Reference Book(s):

Title	Author/s	Publication
Heat and Mass Transfer	R K Rajput	S Chand Publication
Heat and Mass Transfer	D S Kumar	KATSON Books

Web Material Link(s):

• https://nptel.ac.in/downloads/112108149/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be considered.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- elaborate basic concepts and modes of heat transfer.
- do basic calculation involved in heat transfer in various applications.
- do basic calculations applied in heat exchanger design.
- apply heat transfer principles to analyze and design various engineering applications.

Department of Mechanical Engineering

Course Code: SEME3021 Course Name: Fluid Machines

Prerequisite Course(s): SEME2060-Fluid Mechanics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about applications of Fluid Mechanics.
- understand fluid power and different major equipment which can produce power from fluid.
- learn about operation and use of different hydraulic machines like Hydraulic Crane, Hydraulic Ram, Hydraulic Lift, Hydraulic Jack, Accumulator, Intensifier etc.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Hydro Power Plant Principles of Hydro Power Generation, Components and Layout of Hydro Power Plants, Classification; Advantages and Disadvantages of Hydro Power Plant.	03	05
2.	Flow Over Immerged Bodies Introduction, Concept of Lift and Drag, Concept of Streamline and Bluff Bodies, Flow over Cylinder and Aerofoil	03	05
3.	Fans And Blowers Construction details, governing equations, losses and performance curves	04	10
4.	Impulse Turbines Classification of Turbines, Impulse and Reaction, Radial and Axial, Tangential and Mixed flow turbines, Working Principle, Construction of Pelton Wheel, Expression for Work done and Efficiency for Pelton Turbine, Velocity Triangle, Performance characteristic curve, Unit and Specific Quantities, Governing of Impulse Turbines.	10	15
5.	Reaction Turbines Working Principle, Construction of Francis and Kaplan Turbines, Draft Tube Theory, Cavitation, Velocity Triangle, Performance characteristic curve, Unit and Specific Quantities, Governing of Reaction Turbines.	10	15

	Section II					
Module No.	Content	Hours	Weightage in %			
1.	Hydraulic Pumps Classification, Principle of Dynamic and Positive Displacement Pumps, Centrifugal Pump and its Velocity Diagrams, Work Done by Impeller, Various Efficiencies of Pumps, Pump Losses, NPSH, Specific Speed, Characteristic Curves, Priming, Operation of Single and Double acting reciprocating Pump, Volumetric Efficiency; Work done and Slip, Special Purpose Pumps, Cavitation, Effect of Air Vessels	15	30			
2.	Impact of Jet Impact of jet on different types of flat and curved plates, Force exerted on Fixed and Moving Plates, Expression of Efficiency, Condition for Maximum Efficiency and Value for maximum efficiency.	10	15			
3.	Miscellaneous Hydraulic Systems Construction and Working of Hydraulic Intensifier, Hydraulic Accumulator, Hydraulic Jack, Hydraulic Ram, Hydraulic Crane, Hydraulic Fluid Couplings and Torque Convertor	5	05			

List of Practical:

Sr No	Name of Practical	Hours
1.	To Study about Hydro Power Plant	02
2.	Performance test on Pelton Turbine	04
3.	Performance test on Francis Turbine	04
4.	Performance test on Kaplan Turbine	04
5.	Performance test on Centrifugal Pump	02
6.	Performance test on Reciprocating Pump	02
7.	Performance test on Gear Pump	02
8.	Performance Test on Hydraulic Ram	04
9.	Impact of Jet on Vanes	02
10.	Performance test on Pumps in Series and Parallel	04

Text Book(s):

Title	Author/s	Publication	
Textbook of Fluid Mechanics and	R. K. Bansal	Laxmi Publications	
Hydraulic Machines	K. K. Dalisai	Laxiiii Fublications	
Introduction to Fluid Mechanics and	S. K. Som & Biswas. G	Tata McGraw Hill	
Fluid Machines	S. K. SUIII & DISWas. G	Publication	

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics and Fluid Power Engineering	D. S, Kumar	S K Kataria & Sons.
Turbines, Compressors and Fans	S. M. Yahya	Tata McGraw Hill
		Publication

Web Material Link(s):

• https://nptel.ac.in/courses/112104117/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- understand fundamentals of hydro power plant and its operation and construction.
- analyze complete performance of Hydraulic Turbines Experimentally and Theoretically.
- understand working and construction of different Fluid Machines.
- apply the principles of Fluid Statics and Fluid Kinematics to various Fluid Machines.

Department of Mechanical Engineering

Course Code: SEME3031

Course Name: Dynamics of Machinery

Prerequisite Course(s): SEME2081-Kinematics of Machinery

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tutorial		Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about turning moment diagrams and the dynamics of reciprocating engines.
- understand balancing procedure of rotating and reciprocating masses.
- learn about forced and free vibrations.
- learn about governors and gyroscope and their applications.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction Force and Couple, Condition of Static Equilibrium, Free body diagrams, Analysis of Mechanism	02	05			
2.	Dynamic Force Analysis D'Alembert Principal, Inertia Force, Dynamic analysis of Four bar Mechanism, Analysis of floating link, Method of virtual work, Turning Moment diagrams, Fluctuation of energy, Flywheel	12	30			
3.	Balancing Need of balancing, Static balancing, Balancing of static masses in same and different planes, Dynamic Balancing, Balancing of reciprocating masses, Balancing of Inline, Radial and V- Engines	09	15			
	Section II					
Module No.	Content	Hours	Weightage in%			
1.	Vibrations - Single Degree Of Freedom Introduction, Terminologies, Classification, Undamped and damped vibration, Viscous damping, Introduction of Coulomb Damping, Forced vibrations, Magnification Factor, Vibration Isolation and Transmissibility	08	20			

2.	Transverse And Torsional Vibrations Longitudinal and transverse vibrations, Whirling of shaft with and without damping, Dunkerley 's method for simply supported beams Torsional Vibrations, Single; Two and Three rotor systems, Free vibration of gears systems	08	20
3.	Mechanism For Controls Introduction, Types of Governors, Sensitivity, Hunting, Isochronisms, Stability, Effort and Power of Governors, Controlling Force, Angular velocity and Acceleration, Gyroscopic couple, Gyroscopic effect on naval ships, stability of an automobile	06	10

List of Practical:

Sr No	Name of Practical	Hours
1.	Whirling of Shaft Apparatus	02
2.	Balancing of Rotors	04
3.	Governors	04
4.	Gyroscopes	02
5.	Natural frequency of longitudinal vibration of spring mass system.	04
6.	Analysis of Cam and plotting the Cam profile	04
7.	Undamped free vibration of equivalent spring mass system	02
8.	Damped vibration of equivalent spring mass system	02
9.	BI -FILAR System	02
10.	TRI-FILAR System	02
11.	Viscous Vibration	02

Text Book(s):

Title	Author/s	Publication
Theory of Machines	S S Rattan	Tata McGraw Hill
Theory of Machines	P L Ballaney	Khanna Publishers

Reference Book(s):

Title	Author/s	Publication
Theory of Machines and Mechanisms	J E Shigley	Tata McGraw Hill
Theory of Machines	V P Singh	Dhanpatrai Publications

Web Material Link(s):

• https://nptel.ac.in/courses/112101096/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- apply the understanding of turning moment diagrams in various applications.
- perform static and dynamic balancing of rotary and reciprocating machines.
- analysis of free and forced vibrations of various machines.
- apply the methods of controls to various machines.

Department of Mechanical Engineering

Course Code: SEME3041

Course Name: Thermal Engineering

Prerequisite Course(s): SEME2011-Engineering Thermodynamics

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- understand about construction and operation of various compressors.
- learn about various jet propulsion engines.
- recognizing different gas turbine arrangements and differences of a real cycle.
- learn about different types of steam turbines.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Compressors Centrifugal Compressor – Construction and Operation, Static and Total Head Properties, Velocity Diagram, Degree of Reaction, Surging and Chocking, Various Losses Reciprocating Compressor – Construction and Working, Condition for minimum work for Multistage, Inter cooling, Volumetric and Isentropic Efficiency Rotary Compressor – Introduction and Classification, Root Blower, Vane Type, Scroll Type, Screw type Compressors	10	25			
2.	Steam Nozzles Introduction and Classification, Steam Velocity, Discharge through Nozzles and Condition for Maximum Discharge, Critical Pressure Ratio and its physical significance, Effect of Friction, Nozzle Efficiency, General Relationship between area, velocity and pressure, Supersaturated Flow	08	20			
3.	Jet Propulsion Turbojet Engine and its Thrust, Thrust Power, Propulsive and Thermal Efficiency, Turboprop, Ramjet and Pulsejet Engines, Rocket Engine	05	05			

	Section II						
Module No.	Content	Hours	Weightage in %				
1.	Steam Turbines Principal and Operation, Classification, Compounding Impulse Turbines – Velocity Diagram, Determination of Work, Power and Efficiency, Condition for Maximum Efficiency Reaction Turbines – Velocity Diagram, Degree of Reaction, Parson Turbine, Work, Power and Efficiency, Blade Height, Condition for Maximum Efficiency for Parson Turbine, Reheat Factor Governing of Steam Turbines – Throttle, Nozzle and Bypass Governing, Regenerative feed heating, Reheating of steam and Binary vapour power cycle.	11	25				
2.	Gas Turbine Introduction, Merits and Demerits, Classification, Open and Closed Cycle, Actual Brayton Cycle, Compressor and Turbine Efficiency, Optimum Pressure ratio for Maximum Efficiency, Work Ratio, Methods to Improve Efficiency of Gas Turbine – Reheating, Regeneration and Inter cooling, Combine Steam and Gas Turbine Power Plant, Requirements of combustion chamber and Types of Combustion Chamber	11	25				

Text Book(s):

Title	Author/s	Publication
Thermal Engineering	P L Ballaney	Khanna Publishers
Thermal Engineering	S Domkundwar	Dhanpatrai & Co.

Reference Book(s):

Title	Author/s	Publication
Thermal Engineering	R K Rajput	Laxmi Publication
Thermodynamics & Thermal Engineering	J Selwin Rajadurai	New Age Publishers
Turbines, Compressors and Fans	S M Yahya	Tata McGraw Hill Publications

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- elaborate basic concepts, construction and operation of various compressors.
- do basic calculation involved in gas turbines.
- do basic calculations applied steam nozzles.
- do analysis and basic calculation involve in steam turbines.

Department of Mechanical Engineering

Course Code: SEME3051

Course Name: Production Technology

Prerequisite Course(s): SEME2050 - Forming & Machining Processes

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- introduce the students to the theory and mechanism of various cutting processes.
- grasp distinctive knowledge of gear forming and its generating method
- understand the usefulness of Jig & Fixtures, Presses and Press work.
- introduce students with nontraditional manufacturing techniques for shaping newer materials.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Theory of Metal Cutting Cutting Tool Material, Types of cutting tools, Tool geometry and Force analysis. Theory of metal cutting: Orthogonal and oblique cutting, Mechanics of chip formation and types of chips produced, Chip thickness ratio, Shear plane angle and its effect, Forces, Coefficient of friction, Shear strain, Power in machining. Merchant circle diagram and its assumptions and use. Chip breakers, Tool Dynamometers, Tool wears and methods of tool failure, Tool life. Cutting fluids and their properties, Economics of machining, Machinability and its evaluation.	14	30
2.	Thermal Aspects in Machining Sources of heat generation in machining and its effects, Temperature Measurement techniques in machining, types of cutting fluids, Functions of cutting fluid, Characteristics of cutting fluid, Application of cutting fluids, Economics of Metal Cutting Operations.	05	12

3.	Gear and Thread Manufacturing Different types of Threads manufacturing methods, and tools involved, Different gear forming and generating methods with their special features, Gears finishing processes.	04	08
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Press Tool Classification of presses, Classification of dies, cutting actions in dies, clearance, cutting forces, Methods of reducing cutting forces, Minimum Diameter of Piercing Center of Pressure, Blanking, Piercing, Drawing, Bending and Progressive Die design, scrap reduction, strip layout.	08	18
2.	Jigs and Fixtures Definition, Differences between Jigs and Fixtures, Its usefulness in mass production, design principles, 3-2-1 location principle and its application to short and long cylinders, types of locators, concept of work piece control, geo metric control, dimensional control and mechanical control, Clamps, jig bushes, Jigs and fixtures for various machining operations.	06	14
3.	Modern Machining Processes Purpose, Need and Classification, Aspects considered in selection of a process. Principle, construction, working of the following processes: Ultrasonic machining, Abrasive jet machining, Water jet machining, Chemical Machining, Electro Chemical Machining and Grinding, Electro discharge Machining, Plasma arc machining, Laser beam machining, Electron beam machining.	08	18

List of Practical:

Sr No	Name of Practical	Hours
1.	Study of various types of cutting tools and measurement of tool geometry	04
2.	To Understand the Effect of Chosen Parameters on the type of chip produced	04
3.	Determination of chip-thickness ratio and shear plane Angle During Machining	04
4.	Measurement of cutting forces in turning using Lathe Tool Dynamometer under various cutting conditions	04
5.	To study the Temperature Measurement on chip tool interface	04
6.	To study and understand the effect of a suitable cutting lubricant	04
7.	Design a Jig and Fixture for given component	04
8.	To study different press and design of punch and die, also exercise on strip layout and center of pressure	02

Text Book(s):

Title	Author/s	Publication
A Text Book of Production Engineering	Sharma P C	S. Chand Publishers
Production Technology	R K Jain	Khanna Publication

Reference Book(s):

Title	Author/s	Publication
Production Technology	НМТ	Tata McGraw Hill Pub
Metal Cutting principles	M C Shaw	Oxford University press
Fundamentals of machining and machine	Boothroyd	CRC publication
tools		
Workshop Technology Vol. II	Raghuvanshi	Dhanpat rai Pub

Web Material Link(s):

• http://nptel.iitm.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Manuf%20Proc%20II/New index1.html

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- Understand the theory behind cutting of materials for shaping them into desired forms.
- Analyze forces involved during machining process.
- Understand motions in machine tools and analyze various elements of machine tools.
- Interpret modern machining processes for material removal application
- Understand gear and thread manufacturing methods
- Understand work holding method for production activities

Centre for Skill Enhancement & Professional Development

Course Code: SEPD3010

Course Name: Professional Communication & Soft Skills Prerequisite Course(s): SEPD1020: Communication Skills

Teaching & Examination Scheme:

	Teac	Teaching Scheme (Hours/Week) Examination Scheme (Marks)									
	Theory	Practical	tical Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
			Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	01	02	00	02	00	00	50	50	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand multifaceted Professional Speaking Process.
- learn the writing etiquettes for professional purposes.
- gain basic knowledge, skills and the right attitude to succeed in future professional working environment.
- develop confidence, enhance their professional communication ability in civilized, harmonized manner.
- sharpen communication skills with reference to organizational structure.
- expose themselves to the modern modes of communication.

Section I					
Module	Content	Hours	Weightage in %		
1.	 Self-Management & Career Building Self-Evaluation, discipline and criticism SWOT analysis to identify personal strength/ weakness Planning & Goal setting MBTI test for self-analysis Profiling on Online Platforms 	01	7		
2.	 Interpersonal Organizational Communication Interpersonal Behavioral Skills Understanding empathy and comprehend other's opinions/ points of views, Managing Positive and negative emotions Healthy and Unhealthy expression of emotions. Mutuality, Trust, Emotional Bonding and handling situation in interpersonal relationship 	04	25		
3.	 Professional Communication (Speaking) - I Professional Communication and Rhetorics Art of Telephonic Conversation Public Speaking 	03	18		

Section II					
Module	Content	Hours	Weightage in %		
	Professional Communication (Speaking) - II				
	Group Discussion (Concept, importance, Methods, Dos and				
1.	Don'ts, Paralinguistic and Nonverbal Etiquettes)	03	20		
	Personal Interview (Concept, Importance, Methods, Dos				
	and Don'ts, Type, Paralinguistic and Nonverbal Etiquettes)				
	Professional Communication (Writing)				
	Cover Letter and Resume Building				
2.	E mail writing		30		
۷.	Report Building	04	30		
	Technical / Academic Writing				
	(Reference/citation/plagiarism)				

List of Practical:

Sr. No	Name of Practical	
1.	SWOT analysis & Profiling	04
2.	MBTI Test	02
3.	Interpersonal Organizational Communication	02
4.	Group Discussion	04
5.	Personal Interview	04
6.	Cover Letter and Resume	06
7.	E mail and Report Writing	04
8.	Technical Academic Writing	04

Reference Book(s):

Title	Author/s	Publication
Professional Communication	Sheekha Shukla	2010, WordPress
Professional Communication Skills	Rajesh Kariya	Paradise Publication, Jaipur
Soft Skills and Professional	Petes S. J., Francis.	Tata McGraw-Hill
Communication		Education, 2011
Effective Communication and Soft	Nitin Bhatnagar	Pearson Education
Skills		India
Behavioural Science: Achieving	Dr. Abha Singh	John Wiley & Sons, 2012
Behavioural Excellence for Success		
The Hard Truth about Soft Skills	Klaus, Peggy, Jane	London: Harper Collins
	Rohman & Molly Hamaker	

Course Evaluation:

Practical

- Continuous Evaluation consists of performance of Practical to be evaluated out of 10 marks for each practical and average of the same will be converted to 30 marks.
- Internal Viva consists of 20 marks.
- Practical performance/quiz/drawing/test/submission of 25 marks during End Semester Exam.
- Viva/Oral performance of 25 marks during End Semester Exam.

Course Outcome(s):

- understand the importance self-analysis for career building.
- learn tactics of communication in professional/ organizational ambience.
- master the art of conversation and public speaking.
- expose themselves for placement processes.
- develop writing etiquettes pertaining to placement and organizational context.

Department of Mechanical Engineering

Course Code: SEME3910

Course Name: Summer Training

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Theory Practical Tutorial		Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
02		02	00	00	100	00	00	00	100	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- have first-hand experience the real time situations in industrial scenario.
- get familiar with engineering applications in industrial spectrum
- learn to adapt themselves in professional scenario

Outline of the Course:

Sr. No	Content
1.	Selection of Companies
2.	Company Information collection
3.	Report Writing
4.	Presentation & Question-Answer

Course Evaluation:

Sr. No.	Evaluation criteria	Marks
1	Actual work carried & Report Submission	50
2	Final Presentation & Question-Answer session	50
	Grand Total:	100

Course Outcome(s):

- apply their theoretical knowledge into reality.
- learn to adapt the workplace situations when they will be recruited.
- be prepared for the real-world situations in their future.

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

3. Acknowledgements

[All persons (e. g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references
- Before chapter 1, give page numbers in roman letter

Department of Mechanical Engineering

Course Code: SEME3060

Course Name: Design of Basic Machine Elements

Pre requisite Course: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Mar	ks)		
Theory	ory Practical Tutorial		Tutorial Credit	Theory		Practical		Tutorial		Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	01	04	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand design consideration and material selection for particular applications.
- learn design methodology/procedure for machine elements.
- Understand standards of materials designation and machine elements.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction Process of Design, Framework of Design, Designing Methods, Concurrent Engineering	06	10			
2.	Design Analysis Types of Loads, Types of Stresses, Types of Failures, Factor of Safety, Theory of failure, Fatigue failure analysis, Soderberg, Gerber and Goodman Criteria, Estimation of life of components, Introduction to creep and wear failure	10	15			
3.	Material Selection Selection of material, Factors affecting material selection, Ferrous and Non Ferrous metals and alloys, Plastics, BIS designation system for steels	06	10			
4.	Design of Springs Types, Terminologies and Types of ends in helical springs, Stress and Deflection Equations, Correction Factors, Design of helical spring against static and fluctuating loads, Multileaf spring: Terminologies, Nipping and Design	08	15			

Section II						
Module No.	Content	Hours	Weightage In %			
	Design of Shafts and Keys					
1.	Types of Shafts, ASME code for shaft design, Design of shaft,	10	15			
	Types of Keys, Design of Keys					
	Design of Screw And Threaded Fastness					
2.	Types of threads, Terminologies and Design of Power Screw,	08	15			
۷.	Design of Screw and Nut, Design of Screw Jack, Types of Screw	00				
	Fastening, Bolt of uniform strength, ISO Metric screw threads					
	Design of Joints					
3.	Design of Cotter and Knuckle Joints, Strength of welded joints,	80	10			
	Strength of riveted joints, Efficiency of Joints					
	Belt Drives and Brakes					
4.	Brakes, Energy Equations, Block Brake with Short and Long	04	10			
	Shoe, Band and Disc Brake, Selection of Flat belts from					
	manufacturer 's catalogue, Selection of V-Belts					

List of Tutorial:

Sr No	Name of Tutorial	Hours
1.	Design consideration and Material selection	01
2.	Design Analysis against static and fluctuating loads.	01
3.	Design of Cotter Joints	01
4.	Design of Knuckle Joints	01
5.	Design of Helical Springs	02
6.	Design of Multileaf Springs	02
7.	Design of Power Screw	01
8.	Design of Screw Jack	02
9.	Design of Shafts	02
10.	Design of Keys	01
11.	Design of Belt Drives	01

Text Book(s):

Title	Author/s	Publication
Design of Machine Elements	V B Bhandari	McGraw Hill Eduction
Mechanical Engineering Design	Joseph Shigley	McGraw Hill Eduction

Reference Book(s):

Title	Author/s	Publication
Design Data Book		PSG College of Technology
Fundamental of Machine Components Design	R C Junival	John Wiley Publication

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Tutorial which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- carry out preliminary material selection for particular applications.
- able to design various machine parts like joints, screw and threaded fasteners, shaft, keys, power screw and screw joints and springs.
- apply design considerations in design of various machine elements.

Department of Mechanical Engineering

Course Code: SEME3071

Course Name: Internal Combustion Engine & Refrigeration Air Conditioning Prerequisite Course(s): SEME1030-Elements of Mechanical Engineering

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			ching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	eory Practical Tutorial		i.al Considit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	02	00	05	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify functions of various components of Internal Combustion Engine and related performance parameters.
- interpret the differences between Air standard, Fuel air and Actual cycle.
- understand the rating of fuels, Calorific value and their findings.
- explore combustion processes of S.I and C.I engine in detail.
- clarify the concepts of refrigeration and air-conditioning
- explore the different types of refrigeration and air conditioning methods
- understand the difference between VAR and VCR System.
- Selection of refrigerant under different condition with application and properties.

Section I							
Module. No.	Content	Hours	Weightage in %				
1.	Analysis of Fuel Air Cycles and Actual Air Cycles Air standard cycles with assumptions, Fuel air cycles with assumptions, Characteristics of fuel-air mixtures, Variation of specific heat, Dissociation, Comparison of Air Standard and Fuel air cycles, Comparison of air standard and actual cycles, Valve Timing diagram	04	08				
2.	Combustion in I.C Engine Combustion equations, stoichiometric air fuel ratio, rich and lean mixture and its application, adiabatic flame temperature Calorific value and its findings, Combustion in S.I. Engine and C.I. Engines Stages of combustion in S.I. Engine and C.I engine, Detonation and its Control of detonation, Delay period, Factor's influencing delay period, Diesel knock, Control of diesel knock.	06	15				

	Engine Emissions it's Control & Recent Development in		
3.	engine Pollutants and their ill effects, Sources and types, formation of NOx, Particulate emissions, Catalytic converters. Alternate fuels like Alcohol, Hydrogen, Natural Gas, LPG, CNG Properties, Suitability and LPG&CNG based engines, Engine Modifications, Merits and Demerits as fuels, Electric/Hybrid Vehicles, fuel cell		10
	Ignition, Fuel Supply, Lubrication and Cooling System		
4.	Battery and Magneto ignition system and its comparison, firing order, Lubrication of engine components, Lubrication system, wet sump and dry sump, Types of cooling systems, liquid and air cooled, comparison of liquid and air-cooled systems, Simple carburetor, MPFI in S.I. Engine, Requirements of Diesel Injection System, Types of injection systems, Fuel pumps, types of nozzles, spray formation.	05	08
	Supercharging		
5.	supercharging, Effect of supercharging, methods of supercharging, limitations of supercharging, turbocharging.	03	09
	Section II		
Module.	Content	Hours	Weightage
No.		Hours	in %
1.	Basics of refrigeration Methods of producing cooling, ton of refrigeration, coefficient of performance, types and application of refrigeration and air condensing systems. Classification of refrigerant, nomenclature, desirable properties of refrigerant, secondary refrigerants, future industrial refrigerants	04	07
2.	Vapour Compression system Simple system on P-h and T-s diagrams, analysis of the simple cycle, factors affecting the performance of the cycle, actual cycle Compound Compression System Compound compression with intercooler, flash gas removal and flash intercooler, multiple evaporators with back pressure valves and with multiple expansion valves without flash inter cooling, analysis of two evaporators with flash intercooler and individual expansion valve and multiple expansion valve, cascade refrigeration system Absorption refrigeration system Desirable characteristics of refrigerant, selection of pair, practical H2O -NH3 cycle, LiBr - H2O system and its working, Electrolux refrigeration system	08	20
3.	Psychrometry Dalton's law of partial pressure, Properties of moist air, temperature and humidity measuring instruments, psychrometric chart, psychrometric processes such as sensible heating and cooling, heating and humidification cooling and	06	15

	dehumidification, chemical dehumidification, adiabatic		
	saturation Human comfort		
	Selection of inside design conditions, thermal comfort, heat		
	balance equation for a human being, factors affecting thermal comfort, Effective temperature, comfort chart and factors		
	governing effective temperature, selection of outside design		
	conditions		
	Air-conditioning systems		
	Classification, system components, all air; all water; and air-		
4.	water systems, room air conditioners, packaged air conditioning	04	08
	plant, central air conditioning systems, split air conditioning		
	systems		

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Identification of Calorific value of different liquid fuels using Bomb calorimeter	04
1.	and gases fuels using Junkers gas calorimeter.	04
2.	Performance of Morse Test with 4 cylinder 4-stroke Petrol Engine.	02
3.	Performance of 4-stroke diesel engine and Heat balance sheet.	04
4.	Identification of Exhaust gases using 5 gas analyzer.	02
5.	Study of different measurement and testing methods of I.C engines	04
6.	To understand different components of VCR system and to determine its COP	02
7.	To determine COP and apparatus dew point of an air conditioning test rig	04
8.	Study of domestic refrigerator and to determine % running time at different	02
0.	thermostat settings.	02
9.	To understand working of Electrolux refrigerator and to determine its COP.	04
10.	To determine COP and apparatus dew point of an air conditioning test rig.	02

Text Book (s):

Title	Author/s	Publication
Internal Combustion Engines	V. Ganeshan	McGraw Hill
Refrigeration and Air Conditioning	R.S. Khurmi	S. Chand

Reference Book(s):

Title			Author/s	Public	ation	
Internal Con	nbustion Engines		R. B. Mathur and R. P. Sharma	Dhanpat Rai & Sons		
Internal	rnal Combustion Engine		Heywood J. B	McGra	w Hill	
Fundamenta	ıls					
Internal Combustion Engines		Shyam K. Agrawal	New	Age		
				International Ltd.		
Alternative I	Fuels Guide Book		Richard. L. Bechfold	SAE	International	
			Warre	ndale		
Refrigeration and Air conditioning		C.P. Arora	McGraw Hill			
Refrigeration	n and Air conditioning	5	P.S. Desai	Khann	a Publishers	

Web Material Link(s):

- https://nptel.ac.in/courses/112104033/ (Introduction to I.C Engines and Air Pollution)
- https://nptel.ac.in/courses/112103262/ (I.C engine and Gas Turbines)
- https://www.nptel.ac.in/courses/112105128/ (Refrigeration and air conditioning)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Performance of Practical consists of 10 marks.
- Internal Viva consists of 10 marks.
- Viva/Oral/Practical Performance of 30 marks during End Semester Exam.

Course Outcome(s):

- measure and test the different performance parameters of I. C engine.
- define the role and importance of fuel supply system for various engine.
- understand the concepts & types of ignition and governing systems used for I.C Engine.
- clarity of concepts of air-condition and idea about different conditioning systems.
- use of refrigeration in industrial application with types.
- knowledge of properties of different refrigerants and selection of refrigerant.

Department of Mechanical Engineering

Course Code: SEME3080

Course Name: Computer Aided Design and Manufacturing

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			ing Scheme (Hours/Week) Examination Scheme (Marks)													
Theory	Theory Prostical Tutorial Credit		Theory Practical Tutorial Cred		The	eory	Prac	ctical	Tut	orial	Total					
Theory	Flactical	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Tutoriai Cre	ractical rutorial	Credit	iai Creuit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	05	40	60	20	30	00	00	150						

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basic aspects of CAD/CAM.
- gain exposure over the concepts of computer graphics.
- learn geometric modelling and issues in manufacturing.
- develop strong skill of writing CNC programs.
- educate students to understand different advances in manufacturing system like: GT, FMS and RP.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Fundamental of CAD Application of computer for design, Product Cycle and CAD-CAM, Graphics input-output devices, Concept of Coordinate Systems: Working Coordinate System, Model Coordinate System, Screen Coordinate System, Graphics exchange standards - Neutral file formats – IGES, STEP	04	05				
2.	Principles of computer Graphics Introduction to Computer graphics, Scan conversions and Algorithm for generation - DDA, Bresenham's algorithms., 2D and 3D Transformation - Translation, Scaling, Reflection, Rotation, Shearing	08	15				
3.	Geometric Modeling Representation of curves and surfaces, Geometric modeling techniques, Wireframe modeling, Surface Modeling and Solic Modeling, Feature based Parametric and Variation modeling.		15				

	1	T	
4.	Finite Element Analysis Design and analysis and Historical background, Stresses and equilibrium, Boundary conditions, Strain-Displacement relations, Plane stress and plane strain cases, Concept of Raleigh-Ritz and Galerkin's methods, Review of matrix algebra, Generalized procedure for Finite element analysis, Types of elements and Finite element modeling, Coordinates and shape functions, Design problems of structural analysis, Applications and capabilities of various software for FEA.	10	15
	Section II		
Module No.	Content	Hours	Weightage in %
1.	CNC Machine Tools Introduction to NC, CNC, DNC, Manual Part programming, Computer assisted part programming, Components of NC/CNC system, Specification of CNC system, Classification of NC/CNC Machine tools, Nomenclature of NC machine axes, CNC Control System, CNC Programming, Automatic tool changer, Automatic Pallet Changer, Machine tool structure, Guideways, Transmission system, Drives and Feedback Devices, NC/CNC tooling, Canned cycles and subroutines, APT language, Machining from 3D models.	18	30
2.	Introduction to Group Technology, FMS and Rapid Prototyping Objectives, part families, similarities, design and Manufacturing attributes, Classification methods- visual inspection, product flow analysis and coding, G.T. machine cells and types, concept of composite part, benefits and limitations, Flexible Manufacturing system (FMS) – Concept, objectives, applications, classification, FMS layouts, specifications, benefits, limitations, FMS planning and implementation issues, Fundamentals of Rapid Prototyping, Advantages and Applications of RP Types of Rapid Prototyping Systems	08	15
3.	Computer Integrated Manufacturing Basic information of CIMS, hardware and software requirement for CIMS, benefits, scope and Needs, CIMS wheel, elements of CIMS and their role, Fundamentals of communication, data base management	04	05

List of Practical:

Sr No	Name of Practical	Hours
1.	Prepare a programme for plotting lines and curves using algorithms learned	02
2.	Demonstration of 3D modeling using CAD Packages	04
3.	Demonstration of stress analysis using FEA package	06
4.	Part Programming using G and M code: Lathe and Milling jobs	04
5.	Simulation of part programme	06

6.	CNC code generation using any CAM software	04
7.	Problems on Group Technology and Industrial case problems on coding	02
8.	Study of Expert System in Manufacturing and MIS	02

Title	Author/s	Publication
CAD, CAM and CIM	Radhakrishan P. and	New Age International
	Subramaniyam S.	
Numerical control and computer aided	Kundra T. K., Rao P. N.	Tata McGraw Hill
manufacturing	and Tewari N. K.	Publishing company Ltd.

Reference Book(s):

Title	Author/s	Publication
CAD / CAM: Theory and Practice	Ibrahim Zied,	Tata McGraw Hill Publishing
		company Ltd.
CAD/CAM	Rao P. N.	Tata McGraw Hill Publishing
		company Ltd.
Computer numerical control	Radhakrishnan P	New Central Book Agency
machines		
CAD/CAM Computer Aided Design	M. P. Groover, E. W.	Prentice Hall of India, New Delhi.
and Manufacturing	Zimmers	
CNC Programming handbook	Peter Smid	Industrial Press Inc, New York

Web Material Link(s):

- http://help.autodesk.com/view/fusion360/ENU/
- https://academy.autodesk.com/course/83871/essentials-cam
- https://www.autodesk.com/products/fusion-360/blog/getting-started-introduction-to-cam-and-toolpaths/
- https://knowledge.autodesk.com/support/fusion360/learnexplore/caas/CloudHelp/cloudhelp/Cl

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

- apply algorithms of graphical entity generation.
- understand mathematical aspects of geometrical modelling.
- understand and use finite element methods for analysis of simple components.
- develop programs related to manufacturing using codes.
- describe basic concepts of CAM application and understand CAM wheel.
- classify different components using different techniques of group technology.
- analyze the manufacturing network in industry.

Department of Mechanical Engineering

Course Code: SEME3090

Course Name: Industrial Engineering

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	Practical '	Tutorial Credit		Practical Tutorial		The	eory	Prac	ctical	Tut	orial	Total
Tileory		Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	00	00	03	40	60	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide students insight into the concept of industrial engineering.
- familiarize the students with principles of work study and motion study.
- realize the importance of plant design and production planning in industries.
- enable the students to understand cost analysis and inventory management.
- understand about various Industrial Acts.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Industrial Engineering Introduction, History; Activities and Techniques of Industrial Engineering, Concepts of Management and Organization, Departmentalization and Decentralization, Types of Organizations	03	05				
2.	Work Study & Productivity Production and Productivity, Factors influencing productivity, Measurement of Productivity (Productivity Index), Work Content, Excess work and Ineffective Time, Method Study – Objective, Steps, Selection of job, Process Charts, Micro and Memo motion study, Work Measurement – Objectives, Steps, Techniques, Performance Rating, Allowance of Standard time, Techniques of work measurement, Work Sampling – Confidence level, Methods of work sampling, Computation of machine utilization and standard time, Predetermined Motion and Time Study (PMTS), Method Time Measurement (MTM)	14	30				
3.	Economics of Plant Layout And Location Plant Location, Factors affecting Plant Layout, Importance and Principles of Plant Layouts, Types of Layout – Product or Line Layout, Process or Functional Layout, Fixed Position Layout, Travel Chart.	05	15				

	Section II		
Module No.	Content	Hours	Weightage in %
1.	Cost And Break Even Analysis Cost of Production, Classification of Cost, Analysis of Production Cost, Break Even Analysis – Graphical and Mathematical and Break Even Point, Applications of Break Even Chart and Break Even Analysis, Determination of Material Cost, Labour Cost, Expenses, Over Head Expenses, Methods and procedure of job evaluation, merit rating and wage incentive plans - Problems	08	20
2.	Production Planning and Control (PPC) Types of Production, Production Cycle – Process Planning, Forecasting, Loading, Scheduling, Dispatching, Routine. Material Planning, ABC Analysis, Incoming Material Control, Kanban System, MRP System, Master Production Schedule, Bill of Materials, MRP Calculations	11	25
3.	Industrial Acts Need for Industrial acts, Factories act 1948, Industrial dispute act 1947, The Indian trade unions act 1926, Industrial employment act 1946, Payment of wage act 1936, Workmen compensation act 1923, Payment of bonus act 1965, Employees provident fund scheme 1952	04	05

Title	Author/s	Publication
Industrial Engineering and Production Management	M. Mahajan	Dhanpat Rai & Sons.
Industrial Engineering and Production Management	M. Telsung	S. Chand & Co.

Reference Book(s):

Title	Author/s	Publication
Industrial Engineering and Operational Management	S. K. Sharma Savita Sharma	S. K. Kataria & Sons

Web Material Link(s):

• https://nptel.ac.in/courses/112107142/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- apply work and motion management techniques in industries.
- demonstrate the knowledge of designing plants and controlling production.
- optimize the resources of organization and improve the productivity.
- conduct market research, demand forecasting and cost analysis.
- aware about various Industrial Acts.

Department of Mechanical Engineering

Course Code: SEME3101

Course Name: Power Plant Engineering

Prerequisite Course(s): SEME2011-Engineering Thermodynamics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	01	04	40	60	00	00	20	30	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify which are the different power plants in operation with fundamentals various power generation units.
- interpret economics of power generation and country's energy hunger and potential.
- understand different power plant units like Steam based, gas-based power plants, Hydro and Nuclear power plants.
- explore power plants based on renewable resources like Solar, Wind, Geothermal, Tidal.

	Section I						
Module. No.	Content	Hours	Weightage in %				
1.	Thermal Power Plant General Layout of modern power plant, Site selection, Present status of power generation in India.	02	05				
2.	Economics of Power Generation Load duration curves, Connected load, Maximum load, Peak load, Base load and peak load power plants, Load factor, Plant capacity factor, Plant use factor, Demand factor, Diversity factor, Cost of power plant, Performance and operating characteristics of power plant, Tariff for electric energy.	06	20				
3.	High Pressure Steam Generators Unique features and advantages, La-Mont; Benson; Velox, Loeffler and Schmidt-Hartmann boilers, Supercritical, Positive circulation, Fluidized bed combustion.	03	10				
4.	Coal and Ash handling Systems Coal handling and preparation, Combustion equipment and firing methods, Pulverized mills, Mechanical Stokers, Pulverized coal firing systems, Cyclone Furnace, Necessity of Ash disposal, Ash handling systems, Dust collection and its disposal, Mechanical Dust Collector, Electrostatic precipitator.	04	15				

	Section II		
Module. No.	Content	Hours	Weightage in %
1.	Draught System Natural draught – Estimation of height of chimney, Maximum discharge condition, Forced; induced and balanced draught, Power requirement by fans	04	15
2.	Nuclear and Hydro Power Plant Principal of Nuclear energy, Nuclear fission and chain reaction, types of reactors, Boiling water reactor, Pressurised water reactor, Pressurised Heavy water reactor, CANDU reactor Gas cooled reactor, fast breeder reactor, Classification of Hydro- electric power plants and their applications.	04	15
3.	Feed Water Treatments Internal & external water treatment systems – Hot lime soda process, Zeolite ion exchange process, Demineralization plants, Reverse osmosis process, Sea water treatment using reverse osmosis, De-aeration	03	10
4.	Condensers and Cooling Tower Types of Condensers, Condenser Efficiency, Mass of cooling water required, Terminology of Cooling tower, Types of cooling tower and cooling ponds	04	10

List of Tutorial:

Sr. No.	Name of Tutorial	Hours
1.	To solve the numerical based on Economics of power generation.	02
2.	Study the various Feed water treatment for steam generators.	02
3.	Selection of induced and forced draft fans and height of chimney.	02
4.	A case study of Nuclear Power Plant.	02
5.	To understand India's 3-Stage Nuclear Programme and nuclear power plants in India.	02
6.	To Study various types of condenser and cooling towers.	02
7.	A Case study of thermal power plant.	02
8.	Industrial visit report on Power Plant Visit.	01

Text Book (s):

Title	Author/s	Publication
Power Plant Engineering 4e	P.K. Nag	McGraw-Hill Education

Reference Book(s):

Title	Author/s	Publication	
A Course in Power Plant Engineering	S. C Arora and S.	Dhanpat Rai & Co.	
	Domkundwar		
A Text Book of Power Plant	R. K. Rajput	Laxmi Publications (P)	
Engineering		Ltd.	
Power Plant Technology	M.M. El-Wakil	McGraw-Hill Education	

Web Material Link(s):

- https://nptel.ac.in/courses/112107216/ (Review of Thermodynamics)
- https://nptel.ac.in/courses/108105058/8 (Thermal Power Plants)
- https://nptel.ac.in/courses/112106133/15 (Capacity of Steam Power Plant)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Model Preparation task consists of 10 marks.
- Internal Viva consists of 10 marks.
- Viva/Oral Performance of 30 marks during End Semester Exam.

Course Outcome(s):

- interpret different parameters associated with power generation and supply.
- define the role of different power plants for fulfilment of energy requirement of country.
- identify the India's 3 Stage Nuclear Programme and current Power generation by Nuclear plants.
- understand different components and requirements of different power plant considering convention and non-conventional category.

Centre for Skill Enhancement & Professional Development

Course Code: SEPD3020

Course Name: Corporate Grooming & Etiquette

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
01	02	00	02	00	00	50	50	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn corporate and professional structure and mannerisms.
- acquire self-development skills to balance casual and formal situation.
- polish their personal skills for apt behavior in the context of corporate structure.
- develop adequate Skill set required for the workplace.
- become aware about the professional etiquettes and tactics to follow them.

	Section - I							
Module No.	Content	Hours	Weightage in %					
1.	 Corporate Grooming Introduction to corporate culture Corporate Expectations Need of Self-Grooming to the Corporate Expectations Understanding and importance of Professionalism 	03	25					
2.	 Personal Skills Behavioral skills Language Skills Knowledge Skills Problem Solving Skills Developing professional attitude 	04	25					
	Section - II							
Module No.	Content	Hours	Weightage in %					
1.	Management SkillsSelf-managementTime managementWork life balance	04	25					

	Organizational Etiquettes		
2	General Workplace Etiquettes	0.4	25
2.	Presentation Etiquettes	04	25
	Meeting Etiquettes		

List of Practical:

Sr. No	Name of Practical	Hours
1.	Corporate Grooming (Video session/ Role Play/ Skit)	04
2.	Personal Skills (Games/ Quiz/ Activities)	08
3.	Management Skills (Management Activities/ Video Sessions)	06
4.	Organizational Etiquettes (Case Study/ Activities/ Video Sessions)	06
5.	Computer Assisted Activities of Corporate Grooming	06

Reference Book(s):

Title	Author/s	Publication
Grooming and Etiquette for Corporate Men and Women	John Chibaya Mbuya	2009
Effective Communication Skills for Public Relations	Andy Green	Kogan Page, 2006
Personality Development and Soft Skills	Barun Mitra	Oxford University Press, 2016
The EQ Edge: Emotional Intelligence and Your Success	Stein, Steven J. & Howard E. Book	Wiley & Sons, 2006.
Cross Cultural Management: Concepts and Cases	Madhavan	Oxford University Press, 2016
Corporate Grooming and Etiquette	Sarvesh Gulati	Rupa Publications India Pvt. Ltd., 2012
Behavioural Science: Achieving Behavioural Excellence for Success	Dr. Abha Singh	John Wiley & Sons, 2012

Course Evaluation:

Practical

- Continuous Evaluation consists of Performance of Practical to be evaluated out of 10 marks for each practical and average of the same will be converted to 30 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test/submission of 25 marks during End Semester Exam.
- Viva/Oral performance of 25 marks during End Semester Exam.

Course Outcome(s):

Students will be able to

- understand the importance of professional etiquettes and ways to improve the same.
- gain the knowledge and practice of skill sets required in corporate set up.
- learn personal management skills in the organizational context.
- develop an awareness about the corporate etiquettes.

Department of Mechanical Engineering

Course Code: SEME3512

Course Name: Advance Manufacturing Technology

Prerequisite Course(s): SEME2030 - Non-Cutting Manufacturing Processes

SEME2050 - Forming & Machining Processes

Teaching & Examination Scheme:

Teac	hing Scheme	e (Hours/W	Hours/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn the principles of material removal mechanism of nontraditional processes.
- provide depth knowledge in selection of advanced machining process to fabricate intricate and complex shapes in difficult to machine material.
- provide awareness of advanced Nano and additive manufacturing techniques.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction Trends in modern manufacturing; characteristics and classification of modern manufacturing methods, considerations in the process selection.	02	05			
2.	Mechanical Advanced Machining Processes Introduction, principle, process description, process capabilities, material removal mechanism, parametric analysis, tool design, limitations, and applications of Ultrasonic Machining (USM), Abrasive Jet Machining (AJM), Water Jet Machining (WJM) and Abrasive Water Jet Machining (AWJM) processes.	12	25			
3.	Electro-Chemical Processes Fundamental principle of ECM process, Chemistry of the ECM processes, process capabilities, determination of material removal rate, surface finish and accuracy, limitations, and applications of Electrochemical Machining (ECM), Electrochemical Grinding (ECG), Electrochemical deburring, Electrochemical honing and Chemical Machining (CM) processes.	08	20			

	Section II		
Module No.	Content	Hours	Weightage in %
1.	Thermal Metal Removal Processes Electrical Discharge Machining (EDM): Working principle, process description, process capabilities, power circuits, mechanism of material removal, selection of tool electrode and dielectric fluid, limitations, and applications. Wirecut electro discharge machining, powder mixed electro discharge machining process. Laser Beam Machining (LBM): Working principle, type of lasers, machining applications of lasers, mechanism of material removal, shape and material, applications and limitation. Electron Beam Machining (EBM): Generation and control of electron beam, EBM systems, process analysis & characteristics, mechanism of material removal, shape and material, applications and limitations. Plasma Arc Machining (PAM) and Ion Beam Machining (IBM): Process principle, analysis and characteristics of process, mechanism of material removal, shape and material, applications and limitations.	10	30
2.	Hybrid Machining Concept, classification, process capabilities, and applications of various hybrid machining methods based on USM, EDM, ECM, etc.	04	7
3.	Micromachining Processes Introduction to micro machining methods; material removal mechanism and process capability of micro machining methods like micro -turning, micro-milling, micro-drilling, micro EDM, micro- WEDM, micro ECM, etc. ultra-precision machining, electrolytic in-process dressing and grinding.	05	7
4.	Additive Processes: Introduction to additive manufacturing processes, classification, laminated object manufacturing process, adhesive manufacturing process, and digital manufacturing process.	04	6

Title	Author/s	Publication
Introduction to micro machining	V. K. Jain	Narosa publishing house, New Delhi
Nonconventional machining	P. K. Mishra	Narosa publishing house, New Delhi
Modern Machining Processes	P. C. Pandey	Tata McGraw Hill, New Delhi

Reference Book(s):

Title	Author/s	Publication
Advanced Machining processes	V. K. Jain	Allied publishers, New Delhi
Nontraditional manufacturing processes	G. Benedict	Marcel Dekker, New York
Advanced methods of machining	J. A. McGeough	Chapman & Hall, London
Manufacturing Scienc	A. Ghosh and A. K. Malli	East-West Press, New Delhi

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- identify suitable manufacturing process for advanced materials and manufacturing complication.
- deal with sophisticated and advanced equipment such as IBM, EBM, PAM, Waterjet machine etc.
- understand the micro machining processes.
- use the additive manufacturing concept in ear of industry 4.0.

Department of Mechanical Engineering

Course Code: SEME3521

Course Name: Applied Thermodynamics

Prerequisite Course(s): SEME2011-Engineering Thermodynamics

Teaching & Examination Scheme:

Teac	hing Scheme	g Scheme (Hours/Week) Examination Scheme (Marks)								
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- extend various concepts of Engineering thermodynamics and their applications.
- interpret the concepts of thermodynamics associated with combustion processes.
- understand the concepts of Exergy balance and its application to various devices.
- apply different thermodynamic relations between different thermodynamic properties.
- extend the knowledge of various gas and power cycles and its applications to field.

	Section I				
Module. No.	Content	Hours	Weightage in %		
1.	Combustion thermodynamics Stoichiometric air and excess air for combustion of fuels, Mass Balance, Exhaust gas analysis. A/F ratio, Rich Mixture, Lean Mixture and their requirements. enthalpy of formation, Dissociation and equilibrium, emissions, Combustion efficiency, Fuel Cell.	06	15		
2.	Basic applications of Thermodynamics Application of S.F.E.E for various Mechanical Devices, discharging and charging of a tank, Application of Entropy Principals, Entropy transfer with heat flow, P-V, P-T and T-V diagram of Pure Substance, P-V-T Surface.	08	15		
3.	Exergy Dead state, Law of Degradation of Energy, Exergy of Steady flow system, Application of Gouy-Stodola Equation, Exergy Balance for Closed system, Exergy principal, Exergy balance for Steady flow system, second law efficiencies for turbine, Compressor and pump, Heat exchanger and Mixing of two fluids.	09	20		

	Section II				
Module. No.	Content	Hours	Weightage in %		
1.	Thermodynamic Relations Mathematical theorems used for relations, The Maxwell relations, TdS Equation, Relationships involving specific heats, Joule-Thomson or Joule-Kelvin coefficient, Clausis-clapeyron equation, enthalpy, entropy, Gibbs Function and Gibbs Phase rules.	10	25		
2.	Gas and Vapour Power cycles Binary vapour cycle, Combined cycles, Cogeneration, Stirling Cycle, Ericsson Cycle, Lenoir Cycle, Atkinson Cycle with applications, ideal regenerative gas turbine cycle with intercooling and reheat.	06	15		
3.	Jet propulsion Introduction to the principles of jet propulsion, Turbojet and turboprop engines and their processes, Principle of rocket propulsion, Introduction to Rocket Engine.	06	10		

Title	Author/s	Publication
Basic and Applied Thermodynamics	P.K. Nag	Tata Mcgraw-Hill

Reference Book(s):

Title	Author/s	Publication
Fundamentals of Thermodynamics	Borgnakke & Sonntag	Wiley India (P) Ltd.
Thermodynamics - An Engineering	Yunus Cengel & Boles	McGraw-Hill Education
Approach		
Engineering Thermodynamics	Gordon Rogers and Yon Mayhew	Pearson Education Ltd.

Web Material Link(s):

- https://nptel.ac.in/courses/112106133/ (Applied thermodynamics)
- https://nptel.ac.in/courses/112105123/ (Fundamentals of Basic Thermodynamics)
- https://nptel.ac.in/courses/112103243/ (Laws of Thermodynamics)
- https://nptel.ac.in/courses/112103016/ (Advance Engineering Thermodynamics)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- understand the basic laws of thermodynamics to the various engineering devices.
- learn the concept of pure substance and applications of Entropy.
- understand the importance of Second law efficiency and its applications for various mechanical devices.
- develop the knowledge of different aircraft engines and their applications.

Department of Mechanical Engineering

Course Code: SEME3530

Course Name: Estimation & Costing

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)								
Theory Practical	atical Tutorial Credit		Practical Tutorial Credit T		The	eory	Practical		Tutorial		Total
	Practical Tutorial	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
03	00	00	03	40	60	00	00	00	00	100	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide deep study of the costing principles, techniques and cost component.
- address the underlying concepts, methods and application of Engineering Costing & Estimating.

Section I								
Module No.	Content	Hours	Weightage in %					
	Costing & Estimation							
	 Definition, Scope, Objectives & Significance 							
	 Cost Objects, Cost Centers & Cost Units 							
1.	Classification of Cost	04	05					
	Types of Estimate							
	Standard Data							
	Methods of Estimates							
	Cost Ascertainment - Element of Cost							
	• Material Cost – EOQ, Safety Stock, Minimum level,							
	Maximum Level, Re-order Quantity, Types of inventory							
	control systems, Valuation by FIFO, LIFO etc.,							
2.	Illustrative Example	07	15					
	• Labour Cost - Methods of wage payments for direct and	0,	10					
	indirect labour, Piece rate system, Wage incentives:							
	different plans, Illustrative Example							
	• Overheads – Collection, Classification, Apportionment,							
	Absorption treatment of overhead, Illustrative Example							
	Marginal Costing							
3.	Depreciation – Purpose & Method - straight line	07	20					
	method, Diminishing balance method	-	-					
	Break-even analysis							

	Margin of safety		
	Application of marginal costing for decision making.		
	Illustrative Example		
	Budget and Budgetary Control		
	Concepts, Types of Budgets		
4.	Budgetary Control	04	10
	Preparation of Budgets		
	Illustrative Example		
	Section II		
Module No.	Content	Hours	Weightage in %
	Cost Estimation of Forging Shop		
	Losses in forging		
	Forging Cost		
	Illustrative Example		20
1.	Cost Estimation of Foundry Shop	09	
	Estimation of pattern cost		
	Foundry losses		
	Steps for Finding Costing cost		
	Illustrative Example		
	Cost Estimation of Fabrication Shop		
2.	Weldments & Welded joints	05	10
	Welding Cost		10
	Illustrative Example		
	Time & Cost Estimation of Machine Shop		
_	Estimation of machining time for lathe operations		
3.	Estimation of machining time for drilling, boring,	09	20
	shaping, planning, milling and grinding operations		
	Illustrative Example		

Title	Author/s	Publication		
Mechanical Estimating and Costing	B.P. Sinha	Tata McGraw Hill		
	b.r. Sillia	Publishing Co. Ltd. N. Delhi		
Mechanical Estimating and Costing	T.R. Banga and S. C. Sharma	Khanna Publishers, Delhi-6		

Reference Book(s):

Title	Author/s	Publication
Industrial Engineering & Operations management	S. K. Sharma & Savita Sharma	Kataria Publishers
Process Planning & Cost Estimation	R. Kesoram, C. Elanchezhian & B. Vijaya Ramnath	New age international Publication
Process Planning & Cost Estimation	M. Adithan	New age international Publication

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- identify different areas of Engineering Costing & Estimating.
- find the applications of all the areas in day to day life.
- apply cost estimating in decision making.

Department of Science & Humanities

Course Code: SESH3551

Course Name: Electrical Technology

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory Practical Tuto	Tutorial Credit	actical Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
	Fractical	riactical lutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- demonstrate the basic steps involved in design of electrical machines.
- prepare students to perform the analysis of any electromechanical system.
- empower students to understand the working of electrical equipment used in everyday life.
- make the student be able to complete design of transformers, induction machines, dc machines and synchronous machines.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Single phase transformer Types, KVA rating, approximate equivalent circuit, voltage regulation and efficiency of transformer, condition for maximum efficiency. Three phase transformers Types of transformer connection (star/star, star/delta, delta/star, and delta/delta) and applications based on connections. (Theoretical Treatment only) Introduction of power transformer, distribution transformer.	12	25					
2.	Three phase Induction Motor Constructional feature, working principle of three phase induction motors, types; torque equation, torque slip characteristics; power stages; efficiency; types of starters; methods of speed control & Industrial applications. Single phase induction motors Types, construction, working principle of split phase and shaded pole type induction motors, applications. Specifications of induction motors (KW rating, rated voltage, current rating, frequency, speed, class of insulation)	10	25					

	Section II							
Module No.	Content	Hours	Weightage in %					
1.	Synchronous Generator Constructional features (Salient and non- salient), working principle, emf equation, synchronous speed of an alternator, concept of synchronous reactance and impedance, phasor diagram of loaded alternator, voltage regulation of alternator by direct loading method and synchronous impedance method. Specifications of synchronous generator.	13	25					
2.	D.C. Motor Construction, working principle of D.C. generator, emf equation of D C generator. (Theoretical concept only). Working principle of D.C. motor. Types of D. C. motor, back emf, torque equation for D.C. motor, characteristics of D. C. motor (series, shunt and compound), starters of D.C. shunt and series motor, methods for speed control of D.C shunt and series motors, Industrial applications.	10	25					

Title	Author/s	Publication		
Electrical Technology	B. L.Theraja	S Chand Publication Co Ltd.		
Fundamentals of Electrical	Ashfaq Husain	Dhanpat Rai& Co.		
Engineering	Asiliaq riusalli			
Electrical machines	D P Kothari and I J Nagrath	Tata McGraw Hill		

Reference Book(s):

Title	Author/s	Publication		
Electrical Machinery	S.K. Bhattacharya	TTTI Chandigad		
Electrical Technology	Edward Hughes	Pearson Education		
Art and Science of Utilization of	H Pratap	Dhannat Bai and Co. Third Edition		
Electrical Energy	п гтацар	Dhanpat Rai and Co ,Third Edition		
Power Electronics	Dr. P.S. Bhimbra	Khanna Publication		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- formulate and then analyze the working of any electrical machine using mathematical model under loaded and unloaded conditions.
- analyze the response of any electrical machine.
- select a suitable measuring instrument for a given application.

Department of Mechanical Engineering

Course Code: SEME3560

Course Name: Industrial Maintenance and safety

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			heme (Hours/Week) Examination Scheme (Marks)							
Theory Practical	Dractical	Practical Tutorial Credit		Theory		Practical		Tutorial		Total
	Fractical	Fractical Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the concepts of maintenance planning and performance of the machines.
- learn the theory of industrial safety and management.
- know the safety act.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Principles and practices of Maintenance planning Basic Principles of maintenance planning – Objectives and principles of planned maintenance activity – Importance and benefits of sound Maintenance systems – Reliability and machine availability, Equipment Life cycle, Measures for Maintenance. Performance: Equipments breakdowns, Mean Time Between Failures, Mean Time To Repair, Factors of availability, Maintenance organization, Maintenance economics.	08	20				
2.	Maintenance policies and preventive maintenance Maintenance categories – Comparative merits of each category – Preventive maintenance, Maintenance schedules: Repair cycle, Principles and methods of lubrication, Fault Tree Analysis, Total Productive Maintenance: Methodology and Implementation.	08	15				
3.	Condition Monitoring Condition Monitoring: Cost comparison with and without Condition Monitoring, On-load testing and off load. Methods and instruments for Condition Monitoring, Temperature sensitive tapes, Pistol thermometers, wear-debris analysis, noise vibration and harshness analysis of machines	07	15				

	Section II					
Module No.	Content	Hours	Weightage in %			
1.	Introduction to the development of industrial safety and management: History and development of Industrial safety: Implementation of factories act, Formation of various councils, Safety and productivity, Safety organizations. Safety committees, safety committee structure, Roll of management and roll of Govt. in industrial safety, Safety analysis.	08	20			
2.	Accident preventions, protective equipment and the Acts Personal protective equipment, Survey the plant for locations and hazards, Part of body to be protected, Education and training in safety, Prevention causes and cost of accident, Housekeeping, First aid, Firefighting equipment, Accident reporting, Investigations, Industrial psychology in accident prevention, Safety trials.	07	15			
3.	Safety Acts Features of Factory Act, Introduction of Explosive Act, Boiler Act, ESI Act, Workman's compensation Act, Industrial Hygiene, Occupational safety, Diseases prevention, Ergonomics, Occupational diseases, stress, fatigue, health, safety and the physical environment, Engineering methods of controlling chemical hazards, safety and the physical environment, Control of industrial noise and protection against it, Code and regulations for worker safety and health.	07	15			

Title	Author/s	Publication
Industrial Maintenance Management	Srivastava, S.K.	S. Chand and Co.
Installation, Servicing and Maintenance	Bhattacharya, S.N.	S. Chand and Co.
Occupational Safety Management and Engineering	Willie Hammer	Prentice Hall

Reference Book(s):

Title	Author/s	Publication		
Industrial Maintenance	Garg, M.R.			
Maintenance Engineering Hand book	Higgins, L.R.	5 th Edition, McGraw Hill		
Condition Monitoring	Armstrong	BSIRSA		
Handbook of Condition Monitoring	Davies	Chapman and Hall		
Industrial Safety and Health	Ray Asfahl C.	5 th Edition, Prentice Hall		
Management	Ray Asiaiii C.	5 Edition, Prenuce Han		
Reliability and Maintenance				
Engineering	S. C. Mishra	New Age Publishing house		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- understand the maintenance policies and planning
- incorporate different maintenance schedule for machines.
- execute condition monitoring of machines.
- know accidents reporting procedure.
- get the code and regulations for worker safety and health.

Department of Mechanical Engineering

Course Code: SEME4550 Course Name: Mechatronics

Prerequisite Course(s): SESH2211-Basics of Electrical & Electronics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Scher	ne (Mar	·ks)		
Theory Practical Tutorial		actical Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- discover the fundamentals of mechatronics as well as their design and control.
- develop an ability to design a system, component, or process to meet desired needs within realistic constraints.

	Section I					
Module. No.	Content	Hours	Weightage in %			
1.	Introduction to Mechatronics Mechatronic system elements, Measurement system, Control system, Microprocessor based controllers & its applications, Other applications with mechatronic approach, Building blocks of mechatronic system.	06	10			
2.	Sensors & Transducers Classification, Performance terminologies, Displacement, Position & proximity sensors, Photo detectors, Optical encoders, Pneumatic sensor, Hall effect sensor, Velocity & motion sensors: Incremental encoder, Tacho-generator, Piezoelectric sensors, Tactile sensors, Flow & temperature sensors: Ultrasonic sensors, Light sensors.	08	20			
3.	Actuation Systems Pneumatic & hydraulic actuation systems: System configuration, Control System & its elements, Linear actuators, Rotary actuators. Mechanical actuation: System types & its configuration, Fixed ratio type, Invariant motion profile type, variator etc. Electrical actuation system types & configurations, Mechanical switches, Solid state switches, Solenoids.	08	20			

	Section II					
Module No.	Content	Hours	Weightage in %			
1.	Digital Circuits Boolean algebra combinational circuits. (adders, subtractors, encoders, decoders, multiplexers, de-multiplexers, memory units: RAM, ROM, EPROM etc.), Sequential circuits (elementary).	08	20			
2.	Analog Signal Processing Amplifiers, Operational amplifiers, Ideal model for operational amplification, Inverting amplifier, Non-inverting amplifier, Summer, Difference amplifier, Instrumentation amplifier, Integrator, Differentiator, Comparator, ADC, DAC.	08	20			
3.	Electronic System Design Introduction to MPU & MCU, Assembly programming, Interfacing, Introduction to PLC & basics of PLC programming, Basics of filters, Types of filters, Basics of LPS & SMPS, Clipper & clamper circuits.	07	10			

Title	Author/s	Publication
Mechatronics	Necsulescu D.	Pearson Education (Singapore), 2002
Digital Logic & Computer Design	Morris Mano	Prentice Hall, 2001
Mechatronics	HMT Ltd.	Tata McGraw Hill Publication, 2002

Reference Book(s):

Title	Author/s	Publication
Mechatronics	W. Bolton	Pearson Education (India) 2003
Mechatronic System Design	Shetty D., Kolk R. A.	PWS Publicity Boston, 2002

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

- integrate mechanical, electronics, control and computer engineering in the design of mechatronics systems.
- do the complete design, building, interfacing and actuation of a mechatronic system for a set of specifications.

Department of Mechanical Engineering

Course Code: SEME3581

Course Name: Plastics, Ceramics and Composites

Prerequisite Course(s): SEME2020 - Material Science and Metallurgy

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the concept of plastic, ceramic and composite material.
- know processing of plastics and ceramics materials.
- identify different manufacturing process for composite material.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction Polymeric materials and comparison with other engineering materials. Plastic, Thermoplastic and Thermosets, Elastomers and polymers.	04	10					
2.	Processing of plastics and rubbers Introduction to injection moulding, rotational moulding, extrusion, blow moulding, plastic film blowing, compound moulding, resin transfer moulding, resin injection moulding, designing with plastics and rubbers.	09	20					
3.	Fabrication and decorating of plastics Machining of plastics, turning, drilling, sawing, threading, post - moulding techniques, hot stamping, metallic coatings, electroplating, printing, vacuum metalizing and some case studies.	09	20					
	Section II							
Module No.	Content	Hours	Weightage in %					
1.	Ceramic materials Atomic bonding and crystal structure in ceramics, conventional ceramics and glass structure, refractory and insulating	08	15					

	materials, physical, thermal, electrical, magnetic, optical and piezoelectric properties, Differentiation from other engineering materials, Time temperature and environmental effect on properties of ceramics.		
2.	Processing of ceramics Phase Equilibrium Diagram, Gibbs phase rule, advanced structural ceramics, synthesis and processing of ceramics, sintering process, powder pressing and sintering fabrication processes, Sintering defects, slip casting, ceramic injection moulding, tape casting, properties & applications of ceramics and material selection.	07	15
3.	Composite materials Merits & demerits of composites, application of composite, manufacturing processes of composites, Property evaluation of composites.	08	20

Reference Book(s):

Title	Author/s	Publication
		Marcel Dekker, New York,
Plastic Process Engineer	Throne James L.	1979.
Engineering Design of Plastics and	Crawfard R.J	Woodhead Publication, U.K,
Rubber	Crawiai u K.j	1985
Modern Ceramic Engineering,		
Properties, Processing and Use in	Richerson David	Marcel Dekker, 1987
Design		
Engineering Materials and their	Flinn R.A. and Trojan	Jaico Publishing House, 1999.
Applications	P.K.	
Introduction to Ceramics	Kingery W.D, Bowen	John Wiley & Sons, 1975.
	H. K and Uhlman D.R.	John Whey & Johns, 1973.

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After completion of the course, the student will be able to

- know the different processes and bedecking of plastics and rubbers.
- apply the knowledge and applications of ceramics in material selection.
- understand application of composite materials.

FOURTH YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL PROGRAMME AY:2020-21

					Teach	ing Schem	e		Examination Scheme						
Sem	Course Code	Course Title	Offered By		Contact	Hours		Credit	Th	eory	Prac	tical	Tut	orial	Total
				Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SEME4011	Control Engineering	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME4021	Renewable Energy Sources & Systems	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME4031	Design of Power Transmission Elements	ME	3	0	1	4	4	40	60	0	0	20	30	150
7	SEME4040	Operations Research	ME	3	0	1	4	4	40	60	0	0	50	0	150
/	SEPD4010	Creativity, Problem Solving & Innovation	SEPD	3	0	0	3	3	40	60	0	0	0	0	100
	SEME4910	Industrial Training	ME		4		0	4	0	0	100	100	0	0	200
		Elective-III By Industrial Expert		2	2	0	4	3	40	60	20	30	0	0	150
						Total	23	25							1050
0	SEME4920	Major Project	ME		26		26	26	0	0	200	300	0	0	500
8						Total	26	26							500

	TEACHING & EXAMINATION SCHEME FOR FOURTH YEAR B.TECH. MECHANICAL ENGINEERING PROGRAMME (ELECTIVE COURSES)														
	SEME4511 Design of Heat Exchangers ME 3 0 0 3 3 40 60 0 0 0 100														
7	SEME4521	Tools Design	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3631	Automobile Engineering	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3602	Gas Dynamics	ME	3	0	0	3	3	40	60	0	0	0	0	100

Department of Mechanical Engineering

Course Code: SEME4011

Course Name: Control Engineering

Prerequisite Course(s): SESH2211- Basics of Electrical & Electronics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tut	orial	Total
THEOTY	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	04	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- develop the mathematical model of the physical systems.
- analyze the response of the closed and open loop systems.
- analyze the stability of the closed and open loop systems.
- design the various kinds of compensator.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Fundamentals of Control System Basic Concepts of Control System, Classification, System Modeling, Transfer Function, Block Diagram Representation, Signal Flow Graph, Concept of Superposition for Linear Systems with Examples	08	20
2.	System Modelling Translational and Rotational Mechanical, Electrical, Thermal, Hydraulic and Pneumatic Systems, Force Voltage and Force Current Analogy, Position Servo Mechanism. Block Diagram and Signal Flow Graph Representation of Physical Systems along with Rules, Properties, Comparison and Limitation, Mason's Gain Formula	08	15
3.	Time Response and Stability Analysis Concept of Stability, Types of Stability, Routh's Stability Criterion, Special Cases with Numerical Examples, Stability of Closed Loop System, Concept of Root Locus, Open Loop and Closed Loop Transfer Poles, Step by Step Procedure for Root Loci, Numerical Examples	07	15

	Section II		
Module No.	Content	Hours	Weightage in %
1.	Frequency Response Analysis Need of Frequency Response Analysis, Sinusoidal Response of Linear System, Methods Used in Frequency Response, Frequency Domain Specifications	08	20
2.	Hydraulic Control System Basic Elements of Hydraulic Circuit, Principle Used in Hydraulic Circuit, Sources of Hydraulic Power, Integral, Derivative, PD & PID Controller With its Transfer Function, Comparison Between Hydraulic and Electrical Control System	07	15
3.	Pneumatic Control System Basic Elements of Pneumatic Circuit, Difference Between Pneumatic and Hydraulic Control Systems, Force Balance and Force Distance Type Controllers, Nozzle-Flapper Amplifier, PD, PI and PID Control System along with its Transfer Function.	07	15

List of Practical:

Sr. No.	Name of Practical	Hours		
1.	Introduction to simulation software like MATLAB/LABVIEW	2		
2	Modelling of physical system using simulation software	4		
3.	Simulation of linear system to different inputs	2		
1	Given a system transfer function, plot the location of the system zeros	2		
4.	and poles using simulation software			
5.	Simulation of root locus plot using simulation software	4		
6.	Introduction to hydraulic trainer system/software	2		
7.	Development & performance of given hydraulic circuit	4		
8.	Introduction to pneumatic trainer system/software	4		
9.	Development & performance of given pneumatic circuit	4		
10.	Introduction of programmable logic controller and ladder diagram	2		

Text Book(s):

Title	Author/s	Publication				
Control System Engineering	J.Nagrath and M.Gopal	New Age International Publishers,				
Control System Engineering	J.Nagratii aliu M.Gopai	5th Edition, 2007				
Automatic Control Systems	Farid Golnaraghi,	John Wiley & Sons, Inc., 9th Edition				
Automatic Control Systems	Benjamin C Kuo,	Joini Whey & Sons, Inc., 9th Edition				

Reference Book(s):

Title	Author/s	Publication
Modern Control Engineering	Ogata K.	Prentice Hall India, 2003
Modern Control Systems	Richard C. Dorf, Robert H Bishop	Pearson Education International, 12th Edition.
Control System Engineering	Norman S Nise	John Wiley & Sons, Inc., 6th Edition

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/drawing/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

- develop the mathematical model of the physical systems.
- analyze the response of the closed and open loop systems.
- analyze the stability of the closed and open loop systems.
- design the various kinds of compensator.

Department of Mechanical Engineering

Course Code: SEME4021

Course Name: Renewable Energy Sources & Systems Prerequisite Course(s): SEME3011-Heat Transfer

Teaching & Examination Scheme:

Teacl	hing Scheme	e (Hours/W	eek)		Exa	amination Scheme (Marks)				
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify which are the different renewable energy sources available and their national scenario.
- interpret Solar energy and related terminology along with their possible applications and conversions.
- Understand wind energy and related terminology along with their conversion to produce electricity.
- explore the geothermal and ocean energy with their possible conversions.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Renewable Energy Scenario Scope for Renewable Energy, Advantages and Limitations of Renewable Resources, Present Energy Scenario of Conventional and Non- Conventional Resources, Government Policies, National Missions	04	10
2.	Solar Energy Energy Available from the Sun, Spectral Distribution, Sun- Earth Angles and their Relations, Measuring Techniques and Estimation of Solar Radiation Outside and the Earth's Atmosphere, Radiation on Tilted Surface Solar Power Generation Photovoltaic System for Power Generation, Types of Solar Cell Modules and Arrays, Solar Cell Types, Grid Connection, Payback Period Calculation, Advantages and Disadvantages, Site Selection and other Parameters.	19	40

	Solar Applications		
	Solar Applications Conversion of Solar Energy In to Heat, Solar Thermal Collectors, Solar Concentrators Analysis and Performance Evaluation, Solar Energy Thermal Storage, Solar Based Devices like: Solar Pumping, Solar Cooker, Solar Still, Solar		
	Drier, Solar Refrigeration and Air Conditioning, Solar Pond,		
	Heliostat, Solar Furnace		
	Section II	T	
Module No.	Content	Hours	Weightage in %
1.	Wind Energy Principle and Basics of Wind Energy Conversion, Energy Available from Wind, Basics of Lift and Drag, Effect of Density, Angle of Attack and Wind Speed Wind Power Conversion Wind Turbine Rotors, Horizontal and Vertical Axes Rotors, Drag, Lift, Torque and Power Coefficients, Tip Speed Ratio, Solidity of Turbine, Site Selection and Basics of Wind Farm, Solar-Wind Hybrid System	09	20
2.	Bio Energy Energy from Biomass, Sources of Biomass, Different Species, Conversion Process, Advantages and Disadvantages, Properties of Biomass, Biomass Energy Biogas Generation Conversion of Biomass into Fuels, Gasification and Combustion, Aerobic and Anaerobic Bio-Conversion, Types of Biogas Plants, Design and Operation, Factors Affecting Biogas Generation, Gasification, Types and Applications of Gasifiers	07	15
3.	Availability, Vapor and Liquid Dominated Systems, Binary Cycle, Hot Dry Rock Resources, Magma Resources, Advantages and Disadvantages, Applications Ocean Energy Ocean Thermal Energy Conversion, Availability, Advantages and Limitations; Open, Closed and Hybrid Cycle Otec System, Wave and Tidal Energy, Estimation of Tidal Power, Tidal Power Plants, Single and Double Basin Plants, Site Requirements	06	15

List of Practical:

Sr. No.	Name of Practical	Hours
1.	To Prepare one mathematical model using the Sun angles relations for	
1.	particular any one solar application.	06
2.	Demonstration of Solar air heater, solar cooker, Solar pyranometer,	06
۷.	Solar collector, biogas plant, gasifier.	00
3.	To estimate the solar day time with the help of sunshine recorder.	02

4.	To perform efficiency test of solar water heater with its different parameters.	04
5.	To evaluate distilled water output under solar desalination system considering different water depth and day-night performance and calculation of payback period.	04
6.	To estimate the solar power generation using PV panel and estimation of Payback period.	04
7.	To calculate the wind power generation using the small wind mill.	04

Text Book (s):

Title	Author/s	Publication
Solar Energy-Fundamentals, Design, Modelling and Applications.	G.N. Tiwari	Narosa Publishers
Non-conventional energy resources.	Shobh Nath Singh	Pearson India
Solar Energy	S P Sukhatme, J K Nayak	McGraw Hill

Reference Book(s):

Title	Author/s	Publication		
Principles of Solar Engineering	F. Kreith and J.F. Kreider	McGraw Hill		
Solar Energy thermal processes	J.A. Duffie and W.A.	J. Wiley		
Solar Ellergy thermal processes	Beckman	j. whey		
Wind energy Theory and	Ahmed	DIII Eastorn Eastorn Edition		
Practice	Anneu	PHI, Eastern Economy Edition		
Renewable Energy Sources and	Kothari	DUI Factory Franchy Edition		
Emerging Technologies	KUUIdH	PHI, Eastern Economy Edition		

Web Material Links:

- https://nptel.ac.in/courses/112107216/ (Review of Thermodynamics)
- https://nptel.ac.in/courses/108105058/8 (Thermal Power Plants)
- https://nptel.ac.in/courses/112106133/15 (Capacity of Steam Power Plant)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

- interpret national energy scenario and its possible utilization to become self-reliant in the field of renewable energy.
- define the availability of bio energy and its utilization in rural as well urban areas to use natural wastes and their conversion in biogas along with power generation.
- identify the types of renewable energies with their eco-friendly applications.

Department of Mechanical Engineering

Course Code: SEME4031

Course Name: Design of Power Transmission Elements

Prerequisite Course(s): SEME3060-Design of Basic Machine Elements

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)			rks)			
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tut	orial	Total
THEOTY	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	01	04	40	60	00	00	20	30	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn the basics of various transmission elements involved in mechanical power transmission.
- identify various forces and its effect on power transmission.
- impart the ability for selection of proper power transmission system as per requirement.
- understand the standard data catalogue for various power transmission drives.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Design Terminologies, Stress, Strain, Types of Forces, Various Transmission Drives, Design	03	5
2.	Design of Flexible Elements Design of Flat Belts and Pulleys, Selection of V Belts and Pulleys, Selection of Hoisting Wire Ropes, Design of Transmission Chains and Sprockets	09	15
3.	Bearings Sliding Contact Bearings- Types of Journal Bearing, Load Carrying Capacity, Methods of Lubrication, Hydrodynamic Bearing, Performance of Bearing, Mckee's Equation, Heat Dissipation and Power Loss, Summerfield Number. Rolling Contact Bearing- Types, Bearing Designation (SKF and BIS), Static Load carrying Capacity, Life of Bearing, Basic Load Rating.	09	15
4.	Cams, Clutches and Brakes Cam Design: Types, Pressure Angle and Under Cutting Base Circle Determination, Design of Plate Clutches, Axial Clutches,	09	15

	Cone Clutches, Band and Block Brakes, External Shoe Brakes,		
	Internal Expanding Shoe Brake		
	Section II		
Module No.	Content	Hours	Weightage in %
	Spur Gears and Parallel Axis Helical Gears		
	Gear Terminology, Speed Ratios and Number of Teeth, Force		
	Analysis Tooth Stresses, Dynamic Effects, Fatigue Strength,		
	Factor of Safety, Gear Materials, Module and Face Width, Power		
1.	Rating Calculations Based on Strength and Wear	12	20
	Considerations		
	Parallel Axis Helical Gears – Pressure Angle in the Normal and		
	Transverse Plane - Equivalent Number of Teeth, Forces and		
	Stresses		
	Bevel, Worm and Cross Helical Gears		
	Straight Bevel Gear: Tooth Terminology, Tooth Forces and		
	Stresses, Equivalent Number of Teeth, Estimating the		
	Dimensions of Pair of Straight Bevel Gears.		
2.	Worm Gear: Merits and Demerits, Terminology. Thermal	09	15
	Capacity, Materials, Forces and Stresses, Efficiency, Estimating		
	the Size of the Worm Gear Pair.		
	Cross Helical: Terminology - Helix Angles -Estimating the Size		
	of the Pair of Cross Helical Gears		
	Geartrains		
	Geometric Progression, Standard Step Ratio, Design of Sliding		
3.	Mesh Gear Box, Design of Multi Speed Gear Box, Types of Gear	09	15
	Trains, Simple Gear Trains, Compound Gear Train, Reverted		
	Gear Train, Epicyclic Gear Train		

List of Tutorials:

Sr. No.	Name of Tutorial	Hours
1.	Design of Flat belt and selection of V belt	02
2.	Standard Catalogue related to belt, Chain and Spocket	01
3.	Design of sliding and rolling contact bearing	01
4.	Design of single plate clutch	01
5.	Design of brakes and cams	01
6.	Design of spur gears	02
7.	Design of helical gears	02
8.	Design of bevel and worm wheel	02
9.	Standard catalogue for spur, helical and worm gears	01
10.	Design of Gear Trains	02

Text Book(s):

Title	Author/s	Publication
Design of Machine Elements	V B Bhandari	McGraw Hill Eduction
Mechanical Engineering Design	Joseph Shigley	McGraw Hill Eduction

Reference Book(s):

Title	Author/s	Publication
Machine Design	Sundararajamoorthy T. V	Anuradha Publications
Machine Design	R S Khurmi	S Chand Publication
Hand book of Mechanical Design	Gitin Maitra	McGraw Hill Eduction

Web Material Links:

https://nptel.ac.in/courses/112/106/112106137/

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Tests Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of solution of Practical which should be evaluated out of 10 for each Tutorial and average of the same will be converted to 20 Marks.
- Performance/Problem solution/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

- select the materials for mechanical transmission system.
- apply the design knowledge to design the various flexible drives.
- apply the design concepts to design the parallel axis mating gear.
- apply the basic design steps to design the perpendicular and oblique axis mating gear.
- apply the design procedure to design the gear box.
- apply the design principles to design the various friction drives.

Department of Mechanical Engineering

Course Code: SEME4040

Course Name: Operation Research

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	00	01	04	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide students the knowledge of optimization techniques and approaches.
- enable the students apply mathematical, computational and communication skills needed for the practical utility of Operations Research.
- teach students about networking, inventory, queuing, decision and replacement models.
- introduce students to research methods and current trends in Operations Research.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Linear Models Introduction to Operations Research - Linear Programming - Mathematical Formulation, Solution Techniques of LP: Graphical Methods, Analytical Methods: Simplex, Big M and Two Phase, Sensitivity Analysis, Primal and Dual Problems, Economic Interpretation	14	24			
2.	Transportation and Assignment Transportation Problems Definition, Linear Form, Solution Methods: North West Corner Method, Least Cost Method, Vogel's Approximation Method, Degeneracy in Transportation, Modified Distribution Method, Unbalanced Problems and Profit Maximization Problems, Transshipment Problems, Assignment Problems and Travelling Sales Man Problem	08	13			
3.	Queuing Theory Basis of Queuing Theory, Elements of Queuing Theory, Kendall's Notation, Operating Characteristics of a Queuing	08	13			

	System, Classification of Queuing Models, Preliminary		
	Examples of M/M/1:∞/FCFA		
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Inventory Control Inventory Models, Various Costs and Concepts EOQ, Deterministic Inventory Models, Production Models, Stochastic Inventory Models, Buffer Stock	06	10
2.	Decision Models Game theory – Two-person Zero Sum Game, Graphic Solution - Property of Dominance, Algebraic solution Replacement Models - Items that deteriorate with Time, when Money Value Changes, Items that failed completely — Individual Replacement and Group Replacement	12	20
3.	Sequencing and Networks Sequencing — Problem with N jobs and 2 machines - 3 machines and 'M' machines Network Models — Basic Concepts, Construction of Networks, Project Network, CPM and PERT - Critical Path Scheduling, Crashing of Network	12	20

List of Tutorial:

Sr No	Name of Practical	Hours
1.	Exercise on definition, formulation of linear programing problems.	02
2.	Exercise on Graphical solution of linear programing problems	02
3.	Exercise and case problems on Simplex, Big M and Two-phase LP	01
3.	Problems	
4.	Exercise and case problems on Dual and Primal LP Problems	01
5.	Exercise and case problems on Sensitivity Analysis	01
6.	Exercise and case problems on Transportation and Transhipment	01
0.	Problems.	
7.	Exercise and case problems on Assignment and Travelling sales man	02
/.	Problems	
8.	Exercise and case problems on Queuing theory	01
9.	Exercise and case problems on Game theory	01
10.	Exercise on Inventory model	01
11.	Exercise on Replacement theory	01
12.	Exercise and case problems on PERT/CPM	01

Text Book(s):

Title	Author/s	Publication
Operations Research	Kanti Swarup, Gupta PK, and Manmohan	S. Chand & Sons
Operations Research: An Introduction	Hamdy Taha	Pearson

Reference Book(s):

Title	Author/s	Publication
Operations Research	P Mariappan	Pearson
Operations Research	H N wagner	Prentice hall
Optimization in Operations Research	Ronald Rardin	Pearson Education Inc
Quantitative Techniques in Management	N D Vohra	Tata McGraw-Hill

Web Material Links:

• www.nptel.ac.in/

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 Marks.

Tutorial:

- Continuous Evaluation consists of Performance of Tutorial which should be evaluated out of 10 for each Tutorial and average of the same will be converted to 20 Marks.
- Internal Viva component of 30 Marks.

Course Outcome(s):

After the completion of the course, the student will be able to

- describe characteristics and scope of OR.
- to define and formulate mathematical problems.
- to select optimal problems solving techniques for a given problem using LP.
- formulate and solve transportation, travelling sales man and transshipment problems.
- formulate and solve optimization problems related to job/ work assignments.
- demonstrate and solve simple models of Game theory.
- evaluate optimum solution using dynamic programming for different applications.
- choose / devise appropriate queuing model for practical application.
- solve different problems related to Network.

Center for Skill Enhancement and Professional Development

Course Code: SEPD4010

Course Name: Creativity, Problem Solving & Innovation

Teaching & Examination Scheme:

Teac	hing Scheme	e (Hours/W	S/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- achieve expertise with the technicalities of creativity and problem solving.
- advance an assertiveness for innovation.
- advance creative thinking skills using shaft of learning components leading to understanding of plans of creativity, problem solving and innovation
- discuss uses of the concepts of creativity and problem-solving skills in personal, social, academic, and profession life.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	 Introduction to Creativity, Problem Solving and Innovation Definitions of Problem Solving, Creativity and Innovation Need for Problem Solving and Innovation & Scope of Creativity Types and Styles of Thinking Strategies to Develop Creativity, Problem Solving and Innovation Skills 	08	17		
2.	 Questioning and Learning Introduction to Questioning, Learning and Visualization and its Strategies Sources and Methods of Questioning and Learning Finding Perspective, Visualizing thinking 		16		
3.	 Mind Mapping Creative Thinking and Problem Solving Need of Creative Thinking Cracking Creativity - Reversals, Reversing Perspective, seeing all sides, Looking in other world, Finding what you are not looking for and following up Fishbone Diagram SCAMPER Technique 		17		

	Section II		
Module No.	Content	Hours	Weightage in %
1.	 Logic and Reasoning Basic Concept of Logic Divergent Vs Convergent Thinking, Inductive Vs Deductive Thinking Fusion of Ideas for Problem Solving Moral Reasoning Improvisation 	08	17
2.	 Practices of Playing Collaboration and Brainstorming The Spirit of Koinonia QFT Model Connecting the Unconnected Making Novel Combinations 	07	16
3.	 Review Strategies for Creative problem-solving methods A Heuristic Technique Problem-Solving Strategies: Why Bother? Five Building Blocks as per Fogler & LeBlanc Strategy for Critical Thinking for Choosing Lateral Thinking Six Thinking Hats by Edward De Bono Design Thinking 	07	17

Text Book(s):

Title	Author/s	Publication
Thinker Toys	Michael Michalko	Random House Publication 2006
Crackling Creativity, The Secrets of Creative Genus	Michael Michalko	Ten Speed Press 2001

Reference Book(s):

Title	Author/s	Publication
Zig Zag, The Surprising Path to	R Keith Sawyer	Jossy-Bass Publication 2013
Greater Creativity	K Keitii Sawyei	Jossy-bass Fublication 2013
De Bono's Thinking Course	Edward De Bono	Penguin Publication 1994
Six Thinking Hats	Edward De Bono	Penguin Publication 1999
How to Mind Map	Tony Buzan	Thorsons Publication 2002
The Myths of Innovation	Scott Berkum	Berkun Publication 2010
Creative confidence: Unleashing	Tom Kelly and David	William Collins Publication
the creative Potential within Us all	Kelly	2013
The all Laughed	Ira Flatow	Harper Publication 1992
The Ultimate Lateral & Critical	Paul Sloane, Des MacHale	Sterling Publication 2002
Thinking Puzzle book	& M.A. DiSpezio	

Course Evaluation:

Section	Module No.	Evaluation Criteria	Marks
	1	Group Activity on Brainstorming	15
1	2	Mind Mapping Activity	10
1	3	Chart Preparation on 'Practicality of Fishbone Diagram'	15
	3	Group presentation on 'SCAMPER Technique & its applications'	10
	1	Group Presentation on Critical Analysis of a Govt. scheme/	15
		policy/ budget (merit/ demerit, pros/cons etc)	15
2	2	Group Discussion/ Debate/ Elocution	10
	3	Problem Solving Activity (Individual)	10
	3	Presentation (Learning Outcomes)	15
		Grand Total	100

Course Outcome(s):

After completion of the course, the student will be able to

- establish creativity in their day to day actions and educational output.
- solve all types of problems with an optimistic and an impartial attitude.
- reflect innovatively and work towards problem solving in a tactical way.
- initiate different and advanced practices in their selected field of profession.

Department of Mechanical Engineering

Course Code: SEME4511

Course Name: Design of Heat Exchangers

Prerequisite Course(s): SEME3011-Heat Transfer

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Practical		Tutorial		Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	00	00	04	00	00	100	100	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- introduce and explain basics of Heat Exchanger
- calculate basis calculation applied in heat exchanger design.
- learn about analysis and design aspects in various heat exchangers.
- elaborate enhancement and performance evolution of heat exchanger.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Introduction Classification and Selection of Heat Exchanger, Overall Heat Transfer Co-efficient, LMTD and e – NTU Analysis Methods, Fouling and its Control, Rating and Sizing Problems, Design Methodologies	08	17						
2.	Design of Double Pipe Heat Exchanger Thermal and Hydraulic Design of Inner Tube and Annulus, Pressure Loss Calculations, Hair Pin Heat Exchanger with Bare and Finned Inner Tube	10	23						
3.	Design of Compact Heat Exchangers Compact Heat Exchanger, Heat Transfer Enhancement, Plate Fin Heat Exchanger, Tube Fin Heat Exchanger, Heat Transfer and Pressure Drop Calculations	05	10						

	Section II							
Module No.	Content	Hours	Weightage In %					
1.	Enhancement and Performance Evolution Enhancement of Heat Transfer, Performance Evaluation of Heat Transfer Enhancement Technique. Introduction to Inch Analysis	08	20					
2.	Design of Shell & Tube Heat Exchanger Construction and Basic Components, Basic Design procedure, TEMA standards, Conventional Design Methods, Bell Delaware Method, Application of Heat Exchanger	14	30					

Text Book(s):

Title	Author/s	Publication
Heat Exchanger Selection, Rating and	Sadik Kakac Liu H.	CRC Press, Boston, 1998
Thermal Design	Saulk Rakac Liu II.	GRG 1 1635, DOSTOII, 1770
Fundamentals of Heat Exchanger Design	Ramesh K Shah	John Wiley & Sons.

Reference Book(s):

Title	Author/s	Publication		
Compact Heat Exchangers	Kays V A, London A L	McGraw Hill, New York, 1964		
Process Heat Transfer	Donald Q Kern	McGraw Hill		

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Course Outcome(s):

After the completion of the course, the student will be able to

- elaborate basic concepts and construction of various heat exchangers.
- do basic calculations applied in heat exchanger design.
- do detail calculations involved in various heat exchanger design.
- apply heat transfer principles to enhance heat transfer and performance of heat exchangers.

Department of Mechanical Engineering

Course Code: SEME4521 Course Name: Tools Design

Prerequisite Course(s): SEME3060-Design of Basic Machine Elements

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn the basics of various tools for different operations.
- learn the design procedure for various dies for punching, blanking etc.
- impart the ability for selection of proper jigs and fixtures for different manufacturing operations.
- understand the standard data catalogue for various tools.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction to Tool Design Introduction, Types of Tools, Various Manufacturing Operations, Jigs, Fixtures, Mechanics and Geometry of Chip Formation	02	5					
2.	Design of Single Point Cutting Tool Various Angles Related to Cutting Tools, Tool Signature, Effect of Angles of Single Point Cutting Tool, Recommendation for Various Angle, Material Selection for Single Point Cutting Tool, Coated Carbide.	07	15					
3.	Design of Milling Cutter Form Milling Cutter (Relieved), Types of Milling Cutter, Types of Milling, Forces in Milling, Nomenclature of Milling Cutter Elements, Selection of Cutter Geometry and Design	07	15					
4.	Design of Drills Drilling operations, Nomenclature of Twist Drill Elements, Types of Drill, Recommendation Drill Point Geometry for Various Materials, Troubleshooting Drilling Problems Power Requirement for Drilling, Flat Drills	06	15					

	Section II								
Module No.	Content	Hours	Weightage in %						
1.	Design of Drill Jigs Introduction, Types of Drill Jigs, Chip Formation in Drilling, General Consideration in Design of Drill Jigs, Methods of Construction, Design Problems	05	10						
2.	Design of Fixtures Milling Fixtures, Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Design Problems, Universal Fixture	05	10						
3.	Design of Sheet Metal Blanking and Piercing Dies Introduction to Die cutting operations, Blanking and Piercing Die Construction, Pilots, Strippers and Pressure Pads, Strip Layout, Die Clearance, Design Problems	07	15						
4.	Design of Sheet Metal Bending, Forming and Drawing Dies Introduction, Bending Dies, Forming Dies, Drawing Operations, Determination of Blank Size, Design Problems	06	15						

Text Book(s):

Title	Author/s	Publication
Tool Design	Donaldson	McGRAW-HILL Publication

Reference Book(s):

Title	Author/s	Publication
Fundamentals of tool design with CD	Nee, John	SME Publication

Web Material Links:

https://nptel.ac.in/courses/112105233/

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Tests Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Course Outcome(s):

After the completion of the course, the Students will be able to

- select the materials for various tools.
- apply the design knowledge to design the piercing, blanking, forming, and bending dies.
- apply the design concepts to design the single point cutting tools.
- apply the basic design steps to design jigs and fixtures for drilling, milling, broaching etc.
- apply the design procedure to design milling cutter.

Department of Mechanical Engineering

Course Code: SEME3631

Course Name: Automobile Engineering

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tutorial		Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- make students understand the basic concepts, requirements and working of various Components of automobile.
- enable students to design basic systems like brakes, steering, and suspensions.
- make students understand construction and working of different systems like Transmission, steering and suspensions.
- make students understand automotive electronics.
- aware students about recent technologies in automobile engineering and its working.
- reduce the pace between basic vehicle technology and technologies in modern vehicles.

Section I					
Module No.	Content	Hours	Weightage in %		
NO.	Introduction and Performance:		111 70		
1.	History and development of automobile, classification, layout, major components, Resistance to motion of vehicle, air rolling and gradient resistances. Power requirement for acceleration and gradability	04	10		
2.	Brakes: Types of brakes – drum, disc, power and hydraulic; Brake efficiency and stopping distance, Weight transfer, skidding, antilock braking system.	05	10		
3.	Transmission System: Constructional features and working of clutches, Gear Train: sliding mesh, constant mesh and synchromesh gear boxes with related components, Propeller and drive shaft, universal joints, Rear wheel drive arrangements, Rear axle	10	20		

	final drive, the differential, rear axle, Simple problems in all mentioned topics, Automatic Transmission and CVT.		
4.	Wheels and Tyres: Types of wheels, Types of tyres, Tyre thread, Tyre selection.	03	10
	Section II		
Module	Content	Hours	Weightage
No.			in %
1.	Electrical and Electronics System: Electrical and electronic components of vehicle, fundamentals of engine electricals, Lighting and Indicators: Features, Requirements and typical settings, Body electrical and electronic systems, Monitoring and Instrumentation.	05	10
2.	Steering System: Types of suspension systems, Functional requirements of suspension systems, Front suspension system and Steering: Types, Definitions for wheel orientation and its effect, Types and Constructional features of Front Suspension, Steering layout, types of steering gears, steering linkages, steering mechanism, definitions and significance of camber, caster and king pin inclination, toe in and toe out on turn, measurement and adjustment of various steering system layouts, steering ratio, under steering and over steering, steering geometry		25
3.	Suspension System: Principle, type of suspension system, conventional and independent front and rear axle, spring, rubber and air suspensions, automatic/hydro suspension system, shock absorbers.	06	15

Reference Book(s):

Title	Author/s	Publication
Automobile Engineering	Kirpal Singh	Standard Pub.& Dist.
Automobile Technology	N. K. Giri	Khanna Publication
Course in Automobile Engineering	R. P. Sharma	Dhanpat Rai & Sons.
Automobile Engineering	S. K. Saxena	Laxmi Publication Pvt. Ltd.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the successful completion of the course, the Students will be able to

- Understand needs and working of various systems in automobiles.
- Design various systems commonly used in automobiles.
- Develop a skill to work in multi-disciplinary streams.
- Illustrate the maintenance and repair of automobiles.
- Understand market and businesses of automobile industry.
- Outline about recent trends and research areas in Automobiles.

Department of Mechanical Engineering

Course Code: SEME3602 Course Name: Gas Dynamics

Prerequisite Course(s): -- Fluid Mechanics (SEME2060)

Power Plant Engineering(SEME3101)

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)								
Th	Theory Practical Tutorial		rial Credit	The	eory	Prac	ctical	Tute	orial	Total	
111	Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
(03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about basic concepts of gas dynamics
- learn about how the gas behaves in different operating conditions
- learn about basics of compressible flow
- learn about application of gas dynamics in various mechanical systems

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Fundamentals of compressible flow: Ideal gas relationship, The adiabatic energy equation, Mach number and its significance, Mach waves, Mach cone and Mach angle, static and stagnation states, relationship between stagnation temperature, pressure, density and enthalpy in terms of Mach number, stagnation velocity of sound, reference speeds, various regions of flow, Effect of Mach number on compressibility, Area velocity relationship.	08	20				
2.	One Dimensional Isentropic flow: General features of isentropic flow, performance curve, Comparison of adiabatic and isentropic process, One dimensional isentropic flow in ducts of varying cross- section- nozzles and diffusers, operation of nozzles under varying pressure ratio, mass flow rate in nozzles, critical properties and choking, area ratio as function of Mach number, Impulse function, non-dimensional mass flow rate in terms of pressure ratio, area ratio and Mach number, Working charts and gas tables, Application of Isentropic flow	10	20				

	Flow in constant area duct with heat transfer (Rayleigh		
3.	flow): Simple heating relation of a perfect gas, Rayleigh curve and Rayleigh flow equations, variations of flow properties, maximum heat transfer, tables and charts for Rayleigh flow.	07	10
	Section II	•	
Module No.	Content	Hours	Weightage in %
1.	Normal shock Waves: Development of shock wave, Thickness of shock wave, governing equations, Strength of shock waves, Prandtl-Mayer relation, Rankine-Hugoniot relation, Mach number in the downstream of normal shock, variation of flow parameters across the normal shock, normal shock in Fanno and Rayleigh flows, impossibility of a rarefaction shock, supersonic diffusers, supersonic pitot tube.	10	25
2.	Flow in constant area duct with friction (Fanno flow): Fanno curve and Fanno flow equations, solution of Fanno flow equations, variation of flow properties, variation of Mach no. with duct length, isothermal flow in constant area duct with friction, tables and charts for Fanno flow, Experimental friction coefficients.	10	25

Text Book(s):

Title	Author/s	Publication
Fundamental of Compressible flow	S. M. Yahya	New Age International Publication
Fundamentals of compressible	P. Balachandran	PHI Learning, New Delhi
fluid dynamics		

Reference Book(s):

Title	Author/s	Publication		
Gas Dynamics	E. Rathakrishnan	PHI Learning, New Delhi		
Gas Dynamics and Jet Propulsion	P. Murugaperumal	Scitech Publication, Chennai.		

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the successful completion of the course, the Students will be able to

- understand the basic concepts of gas dynamics.
- understand the behavior of gas under different conditions.
- understand the basics of compressible flow.
- correlate fundamentals of Gas Dynamics with various mechanical systems

© 2020 All rights reserved to
P P Savani School of Engineering
P P Savani University Campus, NH 48, GETCO, Near Biltech, Village: Dhamdod, Kosamba, Dist.: Surat – 394125